
 

1 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

[MS-FSDQE]:  
Distributed Query Execution Protocol Specification 

 

Intellectual Property Rights Notice for Open Specifications Documentation 

 Technical Documentation. Microsoft publishes Open Specifications documentation for 

protocols, file formats, languages, standards as well as overviews of the interaction among each 
of these technologies.  

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other 
terms that are contained in the terms of use for the Microsoft website that hosts this 

documentation, you may make copies of it in order to develop implementations of the 
technologies described in the Open Specifications and may distribute portions of it in your 
implementations using these technologies or your documentation as necessary to properly 

document the implementation. You may also distribute in your implementation, with or without 
modification, any schema, IDL’s, or code samples that are included in the documentation. This 
permission also applies to any documents that are referenced in the Open Specifications.  

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. 

 Patents. Microsoft has patents that may cover your implementations of the technologies 
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the 
documentation grants any licenses under those or any other Microsoft patents. However, a given 

Open Specification may be covered by Microsoft Open Specification Promise or the Community 
Promise. If you would prefer a written license, or if the technologies described in the Open 
Specifications are not covered by the Open Specifications Promise or Community Promise, as 
applicable, patent licenses are available by contacting iplg@microsoft.com. 

 Trademarks. The names of companies and products contained in this documentation may be 
covered by trademarks or similar intellectual property rights. This notice does not grant any 

licenses under those rights. 

 Fictitious Names. The example companies, organizations, products, domain names, e-mail 
addresses, logos, people, places, and events depicted in this documentation are fictitious.  No 
association with any real company, organization, product, domain name, email address, logo, 
person, place, or event is intended or should be inferred. 

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights 
other than specifically described above, whether by implication, estoppel, or otherwise. 

Tools. The Open Specifications do not require the use of Microsoft programming tools or 
programming environments in order for you to develop an implementation. If you have access to 
Microsoft programming tools and environments you are free to take advantage of them. Certain 

Open Specifications are intended for use in conjunction with publicly available standard 
specifications and network programming art, and assumes that the reader either is familiar with the 
aforementioned material or has immediate access to it. 

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com


 

2 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Revision Summary 

Date 

Revision 

History 

Revision 

Class Comments 

11/06/2009 0.1 Major Initial Availability 

02/19/2010 1.0 Minor Updated the technical content 

03/31/2010 1.01 Editorial Revised and edited the technical content 

04/30/2010 1.02 Editorial Revised and edited the technical content 

06/07/2010 1.03 Editorial Revised and edited the technical content 

06/29/2010 1.04 Editorial Changed language and formatting in the technical 
content. 

07/23/2010 1.04 No change No changes to the meaning, language, or formatting of 
the technical content. 

09/27/2010 1.04 No change No changes to the meaning, language, or formatting of 
the technical content. 

11/15/2010 1.04 No change No changes to the meaning, language, or formatting of 
the technical content. 

12/17/2010 1.05 Minor Clarified the meaning of the technical content. 

03/18/2011 1.05 No change No changes to the meaning, language, or formatting of 
the technical content. 

06/10/2011 1.05 No change No changes to the meaning, language, or formatting of 
the technical content. 

01/20/2012 1.05 No change No changes to the meaning, language, or formatting of 
the technical content. 

04/11/2012 1.05 No change No changes to the meaning, language, or formatting of 
the technical content. 

07/16/2012 1.05 No change No changes to the meaning, language, or formatting of 
the technical content. 

 



 

3 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Table of Contents 

1   Introduction ............................................................................................................. 6 
1.1   Glossary ............................................................................................................... 6 
1.2   References ............................................................................................................ 6 

1.2.1   Normative References ....................................................................................... 7 
1.2.2   Informative References ..................................................................................... 7 

1.3   Protocol Overview (Synopsis) .................................................................................. 7 
1.4   Relationship to Other Protocols ................................................................................ 9 
1.5   Prerequisites/Preconditions ..................................................................................... 9 
1.6   Applicability Statement ......................................................................................... 10 
1.7   Versioning and Capability Negotiation ..................................................................... 10 
1.8   Vendor-Extensible Fields ....................................................................................... 10 
1.9   Standards Assignments ........................................................................................ 10 

2   Messages................................................................................................................ 11 
2.1   Transport ............................................................................................................ 11 
2.2   Message Syntax .................................................................................................. 11 

2.2.1   Numeric Data Format Conventions ................................................................... 11 
2.2.2   Multi-part Message End ................................................................................... 12 
2.2.3   PING Request Message ................................................................................... 12 
2.2.4   PING Request Answer Message ........................................................................ 13 
2.2.5   Error Message ................................................................................................ 14 
2.2.6   Query Request ............................................................................................... 17 

2.2.6.1   Query operators ....................................................................................... 30 
2.2.7   Query Response ............................................................................................. 37 
2.2.8   Result Details Request .................................................................................... 47 
2.2.9   Result Details Response .................................................................................. 50 
2.2.10   Queue Length Message ................................................................................. 51 
2.2.11   Statistics Query Request ............................................................................... 52 
2.2.12   Statistics Query Response ............................................................................. 53 

3   Protocol Details ...................................................................................................... 54 
3.1   Common Details .................................................................................................. 54 

3.1.1   Common Abstract Data Model .......................................................................... 54 
3.1.2   Timers .......................................................................................................... 56 
3.1.3   Initialization .................................................................................................. 56 
3.1.4   Higher-Layer Triggered Events ......................................................................... 56 
3.1.5   Message Processing Events and Sequencing Rules .............................................. 56 

3.1.5.1   PING ....................................................................................................... 56 
3.1.5.2   Query...................................................................................................... 56 
3.1.5.3   Result Details ........................................................................................... 57 
3.1.5.4   Errors ..................................................................................................... 57 

3.1.6   Timer Events ................................................................................................. 57 
3.1.7   Other Local Events ......................................................................................... 57 

3.2   Client Details ....................................................................................................... 57 
3.2.1   Abstract Data Model ....................................................................................... 57 

3.2.1.1   Handling Multiple Protocol Servers .............................................................. 59 
3.2.1.2   Error Handling .......................................................................................... 60 
3.2.1.3   Issuing a Query ........................................................................................ 60 

3.2.2   Timers .......................................................................................................... 60 
3.2.3   Initialization .................................................................................................. 60 



 

4 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

3.2.4   Higher-Layer Triggered Events ......................................................................... 60 
3.2.5   Message Processing Events and Sequencing Rules .............................................. 61 

3.2.5.1   Receiving an Error Message ....................................................................... 61 
3.2.5.2   PING Request and Response ...................................................................... 61 

3.2.5.2.1   Sending a PING Request and Receiving a PING Request Answer ................ 61 
3.2.5.3   Query Request and Response ..................................................................... 61 

3.2.5.3.1   Sending a Query Request ..................................................................... 61 
3.2.5.3.2   Receiving a Query Response ................................................................. 62 
3.2.5.3.3   Sending a Refine Query Request ........................................................... 62 
3.2.5.3.4   Receiving a Refine Query Response ....................................................... 63 

3.2.5.4   Result Details Request and Response .......................................................... 63 
3.2.5.4.1   Sending a Result Details Request .......................................................... 63 
3.2.5.4.2   Receiving Result Details Responses ....................................................... 64 
3.2.5.4.3   Receiving a Multi-part Message End Message .......................................... 64 

3.2.5.5   Receiving a Queue Length Message............................................................. 64 
3.2.5.6   Statistics Query Request and Response ....................................................... 64 

3.2.5.6.1   Sending a Statistics Query Request ....................................................... 64 
3.2.5.6.2   Receiving a Statistics Query Response ................................................... 64 

3.2.6   Timer Events ................................................................................................. 64 
3.2.7   Other Local Events ......................................................................................... 65 

3.3   Server Details ..................................................................................................... 65 
3.3.1   Abstract Data Model ....................................................................................... 65 

3.3.1.1   Handling Multiple Protocol Clients and Multiple Queries per Client ................... 65 
3.3.1.2   Handling PING Requests ............................................................................ 66 
3.3.1.3   Search Index ........................................................................................... 66 
3.3.1.4   Evaluating Queries .................................................................................... 66 
3.3.1.5   Returning Query Hit Details ....................................................................... 67 

3.3.2   Timers .......................................................................................................... 68 
3.3.3   Initialization .................................................................................................. 68 
3.3.4   Higher-Layer Triggered Events ......................................................................... 69 
3.3.5   Message Processing Events and Sequencing Rules .............................................. 69 

3.3.5.1   Monitoring the Protocol Connection ............................................................. 69 
3.3.5.1.1   Messages ........................................................................................... 69 

3.3.5.1.1.1   Sending a PING Request answer ...................................................... 69 
3.3.5.1.1.2   Receiving a PING Request............................................................... 70 

3.3.5.2   Processing Queries.................................................................................... 70 
3.3.5.2.1   Messages ........................................................................................... 70 

3.3.5.2.1.1   Sending a Query Response ............................................................. 70 
3.3.5.2.1.2   Receiving a Query Request ............................................................. 70 

3.3.5.3   Returning Results ..................................................................................... 72 
3.3.5.3.1   Messages ........................................................................................... 72 

3.3.5.3.1.1   Sending a Result Details Response .................................................. 72 
3.3.5.3.1.2   Receiving a Result Details Request .................................................. 73 

3.3.5.4   Returning statistics ................................................................................... 74 
3.3.5.4.1   Messages ........................................................................................... 74 

3.3.5.4.1.1   Sending a Statistics Query Response................................................ 74 
3.3.5.4.1.2   Receiving a Statistics Query Request ............................................... 74 

3.3.6   Timer Events ................................................................................................. 74 
3.3.7   Other Local Events ......................................................................................... 74 

4   Protocol Examples .................................................................................................. 75 
4.1   Full Query/Result ................................................................................................. 75 

4.1.1   Query Request ............................................................................................... 75 



 

5 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

4.1.2   Query Response ............................................................................................. 78 
4.1.3   Result Details Request Message ....................................................................... 79 
4.1.4   Result Details Response .................................................................................. 80 

4.2   Detailed Query .................................................................................................... 83 
4.2.1   Aggregation Examples .................................................................................... 83 

4.2.1.1   Basic Numeric Data Aggregation ................................................................. 83 
4.2.1.2   Numeric Data Aggregation with Predefined-Width Aggregation Buckets ........... 84 
4.2.1.3   Numeric Data Aggregation with Aggregation Bucket ...................................... 85 
4.2.1.4   Aggregation over One Numeric and One String Managed Property .................. 85 
4.2.1.5   Aggregation with Aggregation Bucket Refine ................................................ 86 

4.2.2   Count Operator .............................................................................................. 88 
4.2.3   Internal Property Region Search ....................................................................... 89 

4.3   PING .................................................................................................................. 92 
4.3.1   Ping Request ................................................................................................. 92 
4.3.2   Ping Request Answer ...................................................................................... 92 

4.4   Error .................................................................................................................. 92 
4.4.1   Single Error ................................................................................................... 92 
4.4.2   Multiple Errors ............................................................................................... 93 

5   Security .................................................................................................................. 94 
5.1   Security Considerations for Implementers ............................................................... 94 
5.2   Index of Security Parameters ................................................................................ 94 

6   Appendix A: Product Behavior ................................................................................ 95 

7   Change Tracking..................................................................................................... 96 

8   Index ..................................................................................................................... 97 



 

6 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

1   Introduction 

This document specifies the Distributed Query Execution Protocol. This protocol enables a protocol 
client to perform search queries against a protocol server that manages a search engine in a 
distributed environment. 

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD, 
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also 
normative but cannot contain those terms. All other sections and examples in this specification are 
informative. 

1.1   Glossary 

The following terms are defined in [MS-GLOS]: 

big-endian 
Coordinated Universal Time (UTC) 
little-endian 

The following terms are defined in [MS-OFCGLOS]: 

aggregation specification 
aggregator 
arity 
datetime 
field collapsing 
field importance level 

freshness boost 
hit highlighting 
index partition 
item 
query hit 
rank log 

recall 

result set 
search index 
stemming 
summary class 
TCP/IP 
term frequency 

The following terms are specific to this document: 

chunk: A sequence of words that are treated as a single unit by a module that checks spelling. 

internal property region: A subfield of a managed property that is used in query evaluations. 

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as 
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or 

SHOULD NOT. 

1.2   References 

References to Microsoft Open Specifications documentation do not include a publishing year because 
links are to the latest version of the technical documents, which are updated frequently. References 
to other documents include a publishing year when one is available. 

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317


 

7 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

1.2.1   Normative References 

We conduct frequent surveys of the normative references to assure their continued availability. If 
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We 

will assist you in finding the relevant information. Please check the archive site, 
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an 
additional source. 

[IEEE754] Institute of Electrical and Electronics Engineers, "Standard for Binary Floating-Point 
Arithmetic", IEEE 754-1985, October 1985, http://ieeexplore.ieee.org/servlet/opac?punumber=2355 

[MS-FSCX] Microsoft Corporation, "Configuration (XML-RPC) Protocol Specification". 

[MS-FSFIXML] Microsoft Corporation, "FIXML Data Structure". 

[MS-FSIN] Microsoft Corporation, "Input Normalization Data Structure". 

[MS-FSIXDS] Microsoft Corporation, "Index Data Structures". 

[MS-FSSADM] Microsoft Corporation, "Search Administration and Status Protocol Specification". 

[MS-FSSCFG] Microsoft Corporation, "Search Configuration File Format Specification". 

[RFC1950] Deutsch, P., and Gailly, J-L., "ZLIB Compressed Data Format Specification version 3.3", 
RFC 1950, May 1996, http://www.ietf.org/rfc/rfc1950.txt 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt 

[RFC2279] Yergeau, F., "UTF-8, A Transformation Format of ISO10646", RFC 2279, January 1998, 
http://www.ietf.org/rfc/rfc2279.txt 

[XML10] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Third Edition)", 
February 2004, http://www.w3.org/TR/REC-xml 

1.2.2   Informative References 

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary". 

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary". 

[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981, 
http://www.ietf.org/rfc/rfc0793.txt 

1.3   Protocol Overview (Synopsis) 

This protocol issues search requests against a search server and retrieves information about items 
that match the requested search criteria. This is accomplished by sending a set of messages from a 
protocol client to a protocol server, where each message represents one stage of a complete 
operation. The stages are search and retrieval, which again are split into separate request and 
response messages. 

The search stage consists of a message from a protocol client to a protocol server, where the 
message contains the query to perform. The protocol server then evaluates this query against its 

search index. The query can contain additional criteria on how the results are to be sorted, how 
many query hits to return and details about how to merge query hits that have the same values for 
a given property in the results, for example, to show only one item per category specified in a 

mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-FSCX%5d.pdf
%5bMS-FSFIXML%5d.pdf
%5bMS-FSIN%5d.pdf
%5bMS-FSIXDS%5d.pdf
%5bMS-FSSADM%5d.pdf
%5bMS-FSSCFG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90301
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90331
http://go.microsoft.com/fwlink/?LinkId=90600
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90493
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf


 

8 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

property. This protocol supports searching with both strings and numeric values, combined with 
Boolean operators such as "AND" and "OR". The query language also supports range searches, 

wildcards, and searching on proximity.  

When the search stage finishes, the protocol server sends a sorted list of query hits to the protocol 

client. This list consists of item identifiers and the rank score for each item. The query result also 
contains metadata used to sort or merge the query hits.  The protocol client can use this metadata 
to merge results from multiple protocol servers into one list of items. This merging feature enables 
the protocol client to distribute searches over multiple protocol servers, either for increasing the 
number of simultaneous searches supported, or to divide the search index over multiple protocol 
servers to support larger search indexes. 

Then the retrieval stage begins, where the protocol client selects specific items from the query hits, 

and requests the associated item summaries. The item summary contains the content and meta 
information about the document. The protocol server can highlight properties of the item summary, 
based on the query terms, to create condensed item content that shows where the search terms 
were found in an item. The protocol server then sends the query hit details or the condensed item 
content to the protocol client. Displaying the condensed item content enables the end user to 

determine whether the query hit is an interesting result.  

 

Figure 1: Overview of DQE protocol stages 

The separation of the search and retrieval stages enables the protocol client to request details only 

for the exact items it is interested in. This reduces the resources needed for receiving and parsing in 

the protocol client. This also reduces the resource usage on the protocol server by avoiding 
unnecessary disk reads to retrieve all the details about every item that matches the query, and 
lowers the amount of resources used to send the result to the protocol client.  

This protocol includes support for returning aggregated data for the full result set of a search, 
dynamically calculated based on the query terms, without having to return the complete result set 

%5bMS-OFCGLOS%5d.pdf


 

9 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

to the protocol client. This is done by performing the aggregation as part of the search stage, and 
independent of the retrieval stage, and a protocol client can use this information to further refine a 

search before requesting the item summaries. An example of aggregate data could be the language 
in which the item is written, which enables the protocol client to request only items that are written 

in the specified language if multiple languages are present. Another example is using the length of 
documents to request only items of a specific size.  Sorting is performed at the same early stage to 
make sure the order of the query hits is correct, even when a search generates more query hits 
than the protocol server supports returning or more than the protocol client requests. 

The protocol relies on TCP/IP ([RFC793]) as its transport protocol for passing the messages 
between the client and the server. To avoid having to constantly open and close connections 
between the client and the server, the protocol supports multiplexing multiple messages over the 

same single connection. This is accomplished using virtual channels on the same connection 
between the server and the client. Each of the messages that are part of the search traffic are 
marked with a channel identifier that enables a protocol client to determine which message is the 
response to which request when performing multiple searches in parallel.  

1.4   Relationship to Other Protocols 

 

Figure 2: This protocol in relation to other protocols 

No other protocol depends directly on this protocol. IPsec can be used at the network layer to add 
security to implementations that use the protocol, but because IPsec operates on the lower network 
level, it does not impact this protocol. 

Protocol initialization relies on configuration files requested as described in [MS-FSCX]. 

1.5   Prerequisites/Preconditions 

A TCP/IP connection from the protocol client to at least one instance of the protocol server needs to  

exist before the protocol can be used. The protocol depends on pre-shared configuration information 
to decode data correctly. For more information, see section 3. 

The query strings are character normalized before use, as described in [MS-FSIN] section 2.1. For a 
complete recall(2) when querying for lemmatized words, an implementation uses stemming. If 
using a search index type different from the one described in [MS-FSIXDS], the index needs to be 
compatible when it comes to how tokenization is done. There are also rules that describe how to 

construct parts of the index content, including the anchor text and the associated query context 
catalogs as described in [MS-FSFIXML] section 2.5.2. It is a prerequisite that the query strings also 
follow these rules when querying these specific catalogs in the index.  

For substring searches, the query string operators are tokenized as described in the file named 
"maptransform.xml" in [MS-FSSCFG] section 2.3. 

If IPsec is used to secure connections between a protocol client and a protocol server, then 
authentication is performed by the underlying transport protocol. 

%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90493
%5bMS-FSCX%5d.pdf
%5bMS-FSIN%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSIXDS%5d.pdf
%5bMS-FSFIXML%5d.pdf
%5bMS-FSSCFG%5d.pdf


 

10 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

1.6   Applicability Statement 

The protocol is applicable for full-text search applications.  

1.7   Versioning and Capability Negotiation 

None. 

1.8   Vendor-Extensible Fields 

None. 

1.9   Standards Assignments 

None. 



 

11 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

2   Messages 

2.1   Transport 

All messages are transferred over TCP/IP. The protocol maintains at least one TCP/IP connection 
between the protocol client and protocol server for all traffic. Multiple connections can be used, but a 
protocol server MUST send the response on the same connection on which it received the associated 
request.  

2.2   Message Syntax 

2.2.1   Numeric Data Format Conventions 

The following table specifies the data types used in this protocol. A protocol client or protocol server 
MUST support all of the data types in the table.  

Data type Format on the wire 

float32_b Single-precision 32-bit floating point, as specified in [IEEE754]. Big-endian data 
representation. 

float32_l Single-precision 32-bit floating point, as specified in [IEEE754]. Little-endian data 
representation. 

double64_b Double-precision 64-bit floating point, as specified in [IEEE754]. Big-endian data 
representation. 

double64_l Double-precision 64-bit floating point, as specified in [IEEE754]. Little-endian data 
representation. 

int32_b 32-bit signed integer data type with two-complement signed number representation. Big-
endian data representation. 

int32_l 32-bit signed integer data type with two-complement signed number representation. 
Little-endian data representation. 

uint32_b 32-bit unsigned integer data type. Big-endian data representation. 

uint32_l 32-bit unsigned integer data type. Little-endian data representation. 

int16_b 16-bit signed integer data type with two-complement signed number representation. Big-
endian data representation. 

int16_l 16-bit signed integer data type with two-complement signed number representation. 
Little-endian data representation. 

uint16_b 16-bit unsigned integer data type. Big-endian data representation. 

uint16_l 16-bit unsigned integer data type. Little-endian data representation. 

int8 8-bit signed integer data type with two-complement signed number representation. 

uint8 8-bit unsigned integer data type. 

int64_b 64-bit signed integer data type with two-complement signed number representation. Big-
endian data representation. 

int64_l 64-bit signed integer data type with two-complement signed number representation. 

http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89903
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=89903


 

12 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Data type Format on the wire 

Little-endian data representation. 

uint64_b 64-bit unsigned integer data type. Big-endian data representation. 

uint64_l 64-bit unsigned integer data type. Little-endian data representation. 

int96_l 96-bit signed integer data type with two-complement signed number representation. 
Little-endian data representation. 

uint96_l 96-bit unsigned integer data type. Big-endian data representation. 

int160_l 160-bit signed integer data type with two-complement signed number representation. 
Little-endian data representation. 

uint160_l 160-bit unsigned integer data type. Big-endian data representation. 

datetime64_b 64 bit unsigned integer data type that contains a Datetime value. Big-endian data 
representation. Each step corresponds to 100 nanoseconds. The integer represents the 
time from -29000-01-01T00:00:00,000 to 29000-12-31T23:59:59,999   The value is 

specified in UTC. 

2.2.2   Multi-part Message End 

This message signals the end of a multi-part sequence of result details responses. The message 
format is specified in the following table. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length 

Message code 

Channel identifier 

Message Length (4 bytes): This is of type uint32_b and specifies the length of the message in 
bytes, excluding the length of this field. It contains the value 8. 

Message Code (4 bytes): This is of type uint32_b and contains the value 200. 

Channel Identifier (4 bytes): This is of type uint32_b and contains the identifier that associates 
the request and the response (section 3.2.1). 

2.2.3   PING Request Message 

The protocol client sends this message to determine the status of the protocol server and receive 
information about search service availability. The message format is specified in the following table.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length 

%5bMS-OFCGLOS%5d.pdf
%5bMS-GLOS%5d.pdf


 

13 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Message code 

Message length (4 bytes): This is of type uint32_b and contains the length of the message in 
bytes, excluding the length of this field. It contains the value 4. 

Message Code (4 bytes): This is of type uint32_b and contains the value 206. 

2.2.4   PING Request Answer Message 

This is the response to a PING request. The message format is specified in the following table.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length 

Message code 

Index column identifier 

Timestamp 

Total number of search processes  

Active number of search processes 

Total partitions 

Active partitions 

Message length (4 bytes): This is of type uint32_b and specifies the length of the message in 
bytes, excluding the length of this field. It contains the value 32. 

Message Code (4 bytes): This field is of type uint32_b and contains the value 210. 

Index Column Identifier (4 bytes): This is of type uint32_b and specifies the column that the 
protocol server represents. It is configured at install time and MUST be greater than or equal to 0. 

Timestamp (4 bytes): This is of type uint32_b and specifies the time that the protocol server was 
initialized. The age of the protocol server can assist in system diagnosis and tuning. The field 

contains the number of seconds that elapsed after 1970-01-01 UTC at the time it was initialized. 
This information is also used in the datestamp field when the protocol client sends a result details 
request (section 2.2.8). 

Total Number of Search Processes (4 bytes): This is of type uint32_b and specifies how many 

search processes are running on the protocol server that sent this message. The protocol server can 
use this field and the active number of search processes field to specify monitoring information 
for the search service currently offered by the protocol server. The protocol client can ignore this 

diagnostic information.  



 

14 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Active Number of Search Processes (4 bytes): This is of type uint32_b and specifies how 
many search processes are currently active on the protocol server which sent this message.  

The protocol server can use this field, in combination with the total number of search processes 
field, to specify monitoring information for the search service on the protocol server. The protocol 

client can ignore this diagnostic information. 

Total Partitions (4 bytes): This is of type uint32_b and specifies the number of index 
partitions that need to be available on this protocol server for the complete index to be searchable.  

Active Partitions (4 bytes): This is of type uint32_b and specifies the number of partitions 
available in the protocol server when this message was generated. A value less than the contents of 
the total partitions field SHOULD specify that the protocol server can only send partial query 
results, as specified in section 2.2.6. The protocol server uses this information only for diagnosis and 

tuning. It can be queried even if some of the partitions are down. 

2.2.5   Error Message 

This specifies the error that occurred. The channel identifier in the message is the channel identifier 
from the failed request. The structure of the error message is specified in the following table. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length 

Message code 

Channel identifier 

Error code 

Error message length 

Error message 

Message length (4 bytes): This is of type uint32_b and specifies the length of the message in 

bytes, excluding the length of this field. The length MUST be less than 1,000,008 bytes.  

Message Code (4 bytes): This is of type uint32_b and contains the value 203. 

Channel Identifier (4 bytes): This is of type uint32_b and specifies the identifier that associates 
the request and the response (section 3.2.1). 

Error Code (4 bytes): This is of type uint32_b and specifies the error code that represents an 
error message. Error codes are specified in the Error Message field. 

Error message length (4 bytes): This is of type uint32_b and specifies the number of bytes in 

the error message. 

Error Message (variable): This is a UTF-8 encoded, variable-length string that specifies the error. 
The length of the message is contained in the error message length field.  

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf


 

15 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

The following table specifies error messages and associated error codes. The "Root cause origin" 
column specifies whether the error occurred on the protocol server or on the protocol client. The 

"Permanent / Temporary" column also specifies whether the error is temporary and can be corrected 
by resubmission.  

Error 

Code Error message Further explanation 

Permanent/ 

Temporary Root cause origin 

1 General error 
<varying extra 
details>. 

Generic error message 
class for unexpected 
errors. 

Can be both 
temporary and 
permanent, but 
mostly used for 
temporary 
errors. 

Protocol server. 

2 Message varies based 
on the type of parse 
error. Defaults to 
"Error parsing query" 
if the subcomponent 
associated with the 
error is not more 
specific. 

Cannot parse query, 
syntax error. The input 
query from the protocol 
client was malformed or 
not supported. 

Permanent. Protocol client. 

3 All partitions are 
down. 

All partitions on a 
protocol server are 
down. 

Permanent or 
Temporary. 

Protocol server. 
Verify the state of the 
system. 

6 The requested 
functionality is not 
implemented. 

The requested 
functionality is not 
implemented. 

Permanent. Protocol client. 

7 Query not permitted 
to run 

Resource limitations do 
not permit the query to 
run. 

Temporary Protocol server. 
Resubmit query. 

8 Lost connection to 
sub-node. 

A protocol server lost 
connection to its 
underlying search node 
or process.  

Temporary Protocol server. 
Resubmit query. 

9 Multiple errors have 
occurred. 

Multiple errors occurred. 
A newline character 
separates the error 

messages. Error codes 
other than the first are 
prefixed to the error 
message in UTF-8 
format. 

Unknown or 
error-dependent. 

Protocol server. 

10 Query could not be 
evaluated. 

Implementation-specific, 
protocol server error. 

Unknown. Protocol server. 

11 Query timeout. A timeout occurred on 
the protocol server.  

Temporary. Protocol server. 
Resubmit query. 

12 Resource limit 
exceeded. 

Not enough resources to 
perform the query.  

Temporary. Protocol server or 
protocol client. This is 
a temporary resource 
shortage on the 
protocol server, or 



 

16 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Error 

Code Error message Further explanation 

Permanent/ 

Temporary Root cause origin 

because of a resource 
intensive query from 
the protocol client.  

13 Resource limit 
temporarily exceeded. 

Not enough protocol 
server resources to 
perform the query. 

Temporary. Protocol server. 
Query can be 
resubmitted. For 
repeated failures, 
perform query 
analysis to reduce 
the complexity.  

14 The requested 
functionality is not 
supported. 

Functionality not 
supported.  

Permanent. Protocol client 
Change query syntax 
to functionality that is 
supported. 

16 Requested generation 
no longer available for 
query. 

The revision of the 
search index that is 
being queried is no 
longer available or 
cannot be reached. 

Permanent. Protocol client could 
have old values for 
index generation 
fields, as specified in 
section 2.2.6. 
Resubmit the query 
to search against 
search indexes when 
available. 

17 Wildcard term count 
threshold exceeded. 

Expansion of wildcard 
term exceeded the 
configured maximum 
limit of terms for 
expansion. 

Permanent. Protocol client Narrow 
the query and 
resubmit. 

18 No engine available 
for partition 
<number>. 

Specifies that a protocol 
server component was 
stopped.  

Permanent. Protocol server Some 
search indexes are 
unavailable. 

20 Document summary 
timestamp does not 
match request. 

Specifies that the 
datestamp field in the 
result details request 
was not equal to the 
startup timestamp field 
in the PING response.  

Permanent. Protocol client. The 
protocol client MUST 
use the timestamp 
field of the PING 
response.  

21 Document summary 
could not be 
extracted. 

Item summary error. 
Could also be related to 
connectivity issue or 
search nodes out of 
operation. 

Permanent or 
Temporary. 

Protocol server. 
Verify the 
installation. 

22 Document summary 
timeout. 

Item summary error. 
Could also be related to 
connectivity issue or 
search nodes out of 
operation. 

Permanent or 
Temporary. 

Protocol server. 
Verify the 
installation. 

%5bMS-OFCGLOS%5d.pdf


 

17 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

The protocol server can override the content of the error message. The error message column 
specifies the default error message text used. A protocol client implementation MUST base error 

processing on the error code rather than the error message. 

2.2.6   Query Request 

This message contains the query to perform on the search nodes.  The structure is specified in the 
following table. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length  

Message code 

Channel Identifier 

Enabled features 

Query type 

Offset 

Max hits 

Query flags 

Generation Specification 

… 

… 

Rank Profile Specification  

… 

Random Seed (optional) 

Current Date and Time (optional) 

… 

User Cache Lines (optional) 

Max Offset (optional) 

Field Collapsing (optional) 



 

18 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Sort Specification length (optional) 

Sort Specification (optional) 

Aggregation Specification (optional) 

Collapse Field Specification Length (optional) 

Collapse Field Specification (optional) 

Parsed Query (optional) 

Message length (4 bytes): This is of type uint32_b and specifies the length of the message in 
bytes, excluding the length of this field. The length MUST be less than 60,000,008 bytes. 

Message Code (4 bytes): This is of type uint32_b and contains the value 218. 

Channel Identifier (4 bytes): This is of type uint32_b and specifies the identifier that associates 
the request and the response (section 3.2.1). 

Enabled Features (4 bytes): This is of type uint32_b and specifies the request features that the 
protocol client enabled.  The bit flags that are associated with each enabled feature MUST have a 
corresponding data field in the request. For example, if the rank profile bit flag is set, then the 
Rank Profile Specification field MUST be present in the message.  

Bit patterns are specified in the following table. If any other combination of bits is specified, then the 
behavior is undefined. Whether the protocol server sends an error message is implementation-
dependent. If a feature is not enabled in the bitmask, then there is no corresponding field data in 
the message.  See the sections for each feature for the corresponding field data formats. 

Value Feature name Meaning 

0x00000002 Parsed Query  MUST be set for a request if there is a query. For more information 
about parsed query payload data, see section 2.2.6. 

0x00000004 Rank profile 
specification 

Specifies that the query is to be ranked with a specific rank profile. 

0x00000080 Sort 
specification 
present 

Specifies whether a sort specification is included in the message.  

0x00000100 Aggregation 
specification 

Specifies that the query contains an aggregation specification. 

0x00000200 Random seed Specifies that the query includes a random seed. 

0x00000400 Current date 
and time 

Specifies that the Current Date and Time field is present in the 
message. This MUST be set if freshness boost bit flag is set in the 
query flags field.  

0x00000800 Generation 
Specification 

MUST be set for a request. Specifies that processing of revisions of 
search indexes is enabled. 

0x00002000 Field collapsing  Specifies that field collapsing is enabled and the corresponding field 

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf


 

19 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Value Feature name Meaning 

is present in the payload. 

0x00004000 Collapse field 
specification 

Specifies that the message contains a collapse field specification. 

0x00010000 User cache lines MUST be set if the corresponding field is present in the message. 
Specifies that the protocol server SHOULD allocate a specific number of 
cache lines for the result of the current query to increase the speed of 
re-queries. 

0x00020000 Max offset MUST be set if a corresponding field is present in the message. This 
specifies the maximum offset for caching when specifying user cache 
lines. Normally set to the maximum offset limit of the protocol server.  

The features are specified in the following fields. The order of the information in the payload is not 

the same as in the Enabled features table.  

Query Type (4 bytes): This is of type uint32_b and specifies whether the original query from the 
user defaulted to match with an OR or an AND between query terms. This field does not impact 
how query evaluation is performed by the protocol server, because that is already taken into 
account when generating the parsed query stack. This SHOULD be set to 0 if it is unknown 
whether the default combination of terms was performed with an OR or an AND operator. It is also 
set to 0 if multiple search terms were by default combined with an AND operator. Otherwise, if this 

is set to 1, and multiple search terms were specified, they were evaluated as an OR expression. 

Offset (4 bytes): This is of type uint32_b and specifies the offset in the result set from which the 
protocol server MUST returns query hits. If the offset is greater than the number of documents in 
the result set, or if the offset is greater than the maximum supported by the protocol server, then 
the protocol server MUST return 0 hits.  

Max Hits (4 bytes): This is of type uint32_b and specifies the maximum number of query hits to 
return to the protocol client. The number of returned query hits is relative to the search result 

offset, as specified in the Offset field. 

Query Flags (4 bytes): This is of type uint32_b and specifies bits that represent features to 
enable or disable. All other bits are set to 0. Values are specified in the following table. 

Value 

Feature 

name Meaning 

0x00000004 Enable error 
message 

Specifies that the protocol server SHOULD send error messages.  

0x00000008 Report queue 
length 

The protocol server MUST sends a queue length message (section 
2.2.10) before the query response. 

0x00000100 Include 
ranking 
information 

Specifies that the protocol server sends a rank log in the response.  The 
rank log data is formatted as text in the predefined ranklog internal 
property field. The interpretation of the rank log data implementation 
specific.  

0x00000800 Random rank Specifies that random ranking is enabled in the query.  

0x00002000 Freshness 
boost 

When set, the protocol server calculates a freshness boost value. 
Implementations that do not use the freshness boost as part of their 
rank evaluation SHOULD ignore this.  



 

20 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Value 

Feature 

name Meaning 

0x00008000 Report search 
coverage 

Specifies that the protocol server sends information about search 
coverage, and partial result status, in the return query.  

0x00020000 Allow partial 
results 

If this is set, a protocol server sends a response, even if response 
content is incomplete because of lack of search index availability or other 
reasons. If the Report search coverage flag is set, then the protocol 
server sends partial results in the response. For more information, see 
the section 2.2.7.  

If this is not set, the protocol server does not send a query response if 
the response is incomplete.  If the Enable Error message bit flag is set, 
the protocol server SHOULD send an error message.  

0x00040000 Field 
collapsing  

Enables field collapsing. 

0x00080000 Top Level 
search 

MUST be set by the protocol client.  

GenerationSpecification 1 (12 bytes): This field consists of three numbers of the type 
uint32_b. The first MUST be set to 8. The second number MUST be set to 1, and the third MUST be 
set to 0.  

Rank Profile Specification Field 1 (8 bytes): This optional field consists of two numbers of type 
uint32_b, where the first specifies which rank profile to use. If the protocol server does not support 

rank profiles, this value SHOULD be ignored. If the specified rank profile does not exist, the protocol 
uses the default. A rank profile configures the relevancy computation to apply to an index for a 
specific query. A protocol server implements rank profiles, where a configuration is mapped to a 
specific numeric value. The file named "rank.cf" contains rank profiles, as specified in [MS-FSSCFG] 
section 2.18. This file is retrieved using the protocol specified in [MS-FSCX]. The second number is 
not in use and MUST be set to 0. 

Random Seed (4 bytes): This optional field is of type uint32_b and it specifies the seed for the 

random function.  

Current Date and Time (8 bytes): This optional field is of type datetime64_b, and specifies the 
current date and time for the rank freshness boost. The protocol client SHOULD send the same 
value to all protocol servers, so that the protocol servers operate with the same value for current 
time for the same query.  

User Cache Lines (4 bytes):  This optional field is of type uint32_b, and specifies how many 

cache lines SHOULD be used to cache the results of the query. 

Max Offset (4 bytes): This is an optional field of type uint32_b that specifies the maximum offset 
to cache when using user cache lines. A protocol server uses this field’s value for optimizing 
searches. For an implementation where the protocol server specifies maximum limits for query 
offsets, this is set to less than or equal to the maximum limit for user specified cache lines. The 
default maximum offset is 100000. 

Field Collapsing (4 bytes): This optional field is of type uint32_b, and enables the protocol 

server to combine results that contain identical values for a specific managed property. This field 
specifies the maximum number of collapsed results to keep in the result per managed property. If 
the number of collapsed entries for the response exceeds this maximum, the protocol server 
removes them. 

%5bMS-FSSCFG%5d.pdf
%5bMS-FSCX%5d.pdf


 

21 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Sort Specification Length (4 bytes): This is optional field is of type uint32_b and specifies the 
length of the sort specification field. 

Sort Specification (variable): This is an optional, UTF-8 encoded, variable-length string that 
contains the sort specification. The sort specification syntax is specified in the following table. 

Value Description 

+ or - Specifies sort direction for this level. Specified as prefix to the managed property or 
rank profile name. 

"+" ascending order 

" –"descending order. 

<sortby field> This is one level or more of the following:  

<managed property>: A managed property for which sorting is enabled.  This 

specifies to sort the results according to this managed property’s value.  

[rank]: This specifies that the protocol server calculates this sort level according to 

the current rank profile. A rank profile is applied as only one level in the sort 
specification.  Multiple rank profiles are not supported for one query. If specified, 

sorting by rank MUST be the last entry in the sort specification. 

[docid]: Sort the items by the docid field. 

Random 
specification (full 
random search) 

Full randomization runs on the complete result set, and is specified on the form 
"[random:seed=<seed>:hashfield=<managed property with sorting 
enabled>:addtorankmax=<max random value>]".  

The following parameters can be specified: 

seed: Seed value for the randomization. Re-use of a seed produces identical results 

(if the search index content is the same). MUST be present. 

hashfield: Optional managed property name with sorting is enabled. If specified, 

then it is the basis for the random values to select.  

addtorankmax: Optional number between 0 and this value is added to the item 

rank to increase randomness of results. 

Sort formula A formula to sort the result set, which is dynamically calculated for the current query. 
It is specified as "[formula:<expression>]". See the following table for a description of 
the available operators.  

Square brackets ([...]) are a part of the sort syntax. They do not specify optional parameters. 

Sort Formula Specification  

The sort formula feature is an extension of the single- and multi-level sorting functionality. The sort 
formula accepts as input one or more numeric managed properties. The sort formula is specified as 
"[formula:<expression>]", and is dynamically evaluated on the result set of the search query.  
Supported operators are specified in the following table. 

Operator Description 

+ Addition. 

- Subtraction. 



 

22 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Operator Description 

* Multiplication. 

/ Division.  

rank Rank for the item. For example, abs(rank-100) sorts on the distance from rank value 
100. 

[0-9.]+ Numbers are integer or double precision floating point numbers. 

[a-z0-9]+ Any character strings that are not parsed as functions are processed as managed 
property names. Managed properties for which sorting is enabled are valid, for 
example, if sort is enabled for the managed property named "height", then the 
property can be used as an item-specific value in the sort formula. 

( ) Used to group calculations ensuring correct precedence, for example, 4*(3+2) 

sqrt(x) The square root. For example, sqrt(9) returns 3. 

pow(x,y) Calculate x to the power of y. For example, pow(2,3) returns 8. 

exp(x) Calculates the natural logarithm exponent function.  

log(x) Natural logarithm function.  

abs(x) Absolute value. For example, abs(4-10) returns 6. 

ceil(x) Ceiling function. Rounds up to the closest integer. For example, ceil(4.5) returns 5. 

floor(x) Floor function. Rounds down to the closest integer. For example, floor(4.5) returns 4. 

round(x) Round to even function. Rounds to the closest integer. For example, round(4.5) 
returns 5, but round(4.4) returns 4.  

bucket(x,a,b,c,…) The first parameter MUST be the values to sort by, either a managed property name 
or a sub-expression. The remaining parameters specify the numeric bucket 
thresholds. The number of bucket thresholds is arbitrary.  

For example, if the parameter contains "bucket(size,5,15,50,100)", then the values 
associated with the managed property named "size" are aggregated into buckets, and 
the values are rounded down to the closest threshold. Values lower than the value of 
the first parameter are rounded to zero. Values higher than the highest parameter are 
rounded to value of the last parameter. 

All operations support managed property names and floating point or integer numeric values. In 

addition, the special managed property named "rank" MUST be available, which represents the rank 
for an item.  

Example 1: Sorting the items by the square root of the rank is specified with the sort formula 
"[formula:sqrt(rank)]". 

Example 2: If there is a managed property in the search index named "height" that contains the 
height of a building in meters, then a formula that sorts the results by which buildings are closest to 

a height of 20 meters, and that uses the abs() operator, is written as "[formula:abs(20-height)]". 

Aggregation Specification (variable): This is an optional UTF-8 encoded string field that specifies 
the type of aggregation data that is requested. The protocol server dynamically compiles aggregate 
statistics on the data in the query result set. These statistics can contain histogram data whose 



 

23 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

aggregate results are bucketed based on managed property values, in addition to minimum, 
maximum, and mean values for numeric managed properties. This field contains the following fields: 

Uint32_b field: The length of the UTF-8 encoded string that occurs immediately after this field. 

UTF-8 encoded string: A variable sized chunk that contains an aggregation request. 

The aggregation request MUST be according to the following ABNF grammar for all requests other 
than refines: 

aggregationrequest = "(" ( singlevaluefunc / noargumentfunc / hist ) ")" 

singlevaluefunc = ( "max" / "min" / "sum" / "count" / "countnz" SP ":" ) top SP 

internalmanagedpropertyname 

noargumentfunc = "hitcount" SP 

hist = "hist" SP histtype SP *keyvalue SP internalmanagedpropertyname 

histtype = ":" ( specifiedbuckets / "buckets :unique" / fixedbuckets / fixedwidth ) 

specifiedbuckets = ":buckets" SP "'(" 1*DIGIT / bucketspecification ")"  

bucketspecification = (1*DIGIT SP 1*DIGIT) / 1*DIGIT 

fixedbuckets = ":buckets" SP 1*DIGIT 

fixedwidth = ":width" SP 1*DIGIT 

keyvalue = ":" ( top / sorder / cutfreq / cutminbuckets / cutmaxbuckets / prefix ) 

top = "top" SP 1*DIGIT 

sorder = "sorder" SP ( "lexasc" / "lexdesc" ) 

cutfreq = "cutfreq" SP 1*DIGIT 

cutminbuckets = "cutminbuckets" SP 1*DIGIT 

cutmaxbuckets = "cutmaxbuckets" SP 1*DIGIT 

prefix = "prefix" SP 1*UTF-8-octets  

internalmanagedpropertyname = 1*ALPHA 

UTF-8-octets are characters that are present in the index after tokenization and normalization, as 

specified in [MS-FSIN] section 2. 

All references to aggregated managed properties specify the attribute vector names by which the 
managed properties are known to the protocol server. The file named "index.cf" associates the 

managed property names with the internal attribute vector names, as specified in [MS-FSSCFG] 
section 2.10.  This file can be retrieved with the protocol specified in [MS-FSCX]. For more 

information about the internal naming of fields and attribute vectors, see [MS-FSSCFG] section 
2.1.2. 

The refine aggregation request differs in that it uses the prefixed name of the managed property as 
the first parameter. For example, "(refine bavnstring1 2 3'w01 3'w02)" is a refinement request for 
the managed property named bavnstring1 to recalculate the occurrence count on the 2 buckets 
"w01" and "w02". For more information, see the Refine Function section. 

The protocol server supports both numeric- and string aggregation requests. Numeric managed 

properties use numeric aggregators, while string managed properties use string aggregators. 

Aggregation requests are case-sensitive and contain calls to at least one aggregation function. The 
main function call is the hist function, which generates the histogram of aggregation buckets in the 
query response. The contents of the aggregation buckets correspond to the entries in the managed 

properties in the query results. For example, if a collection of items contains an managed property, 
which supports aggregation, that is associated with size, then the result of a hist function 
performed on this property is a series of aggregation buckets that contains sizes. The exact 

distribution of aggregation buckets is specified in the parameters sent to the hist function. The 
distribution is one aggregation bucket per value, or it is aggregation buckets that contain multiple 

%5bMS-FSIN%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-OFCGLOS%5d.pdf


 

24 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

size values from different result hits.  The histogram function supports the parameters specified in 
the following table. 

Operator Description 

:buckets <optional bucket 
specification> 

Histogram with variable width buckets. The bucket is specified as follows: 
'(<bucket limit> <bucket limit> <bucket limit>) 

:buckets :unique Histogram with one bucket per unique value  

:buckets <n> Histogram with <n> buckets of equal size.  

:width <n> Histogram with fixed width buckets. N is the width of the buckets. 

The aggregation buckets are either specified manually or they are specified by appending the unique 
parameter. For example, an aggregation bucket specification is specified as "hist :buckets '(5 10 15) 
<name or internal managed property attribute vector>", while the appended parameter version is 
"hist :buckets :unique". An aggregation buckets parameter with only one integer parameter is a 

special case of the manual bucket specification, and specifies exactly how many buckets in which to 
store the results. If "unique" is not present, a manual aggregation bucket size MUST be specified. 
The protocol server supports the aggregation functions specified in the following table.  

Function Description 

Min Minimum value for the managed property associated with the aggregator in the current result 
set. If the aggregator is not numeric, this is not applicable. 

Max Maximum value for the managed property associated with the aggregator in the current result 
set. If the aggregator is not numeric, this is not applicable. 

Sum Sum of all the values for the managed property associated with the aggregator in the current 
result set. If the aggregator is not numeric, this is not applicable.  

Refine Recalculate aggregation buckets for the specified query. Used by the protocol client if the 
query results specify that some aggregation buckets were truncated. The refine function 
operates on a specific aggregator element to make the protocol server recalculate the result 
to insure correct occurrence counts for each bucket.  

Hitcount Total number of query hits on which aggregated values are based.  

Count The number of sample values used as basis for the functions result. An item can contain 
multiple values for a specific aggregation. 

Countnz Returns the number of entries in the result set that contain at least one value for this 
aggregation result.  

An example numeric aggregation specification is as follows: 

(max bavnnumeric2)(min bavnnumeric2)(sum bavnnumeric2) (count bavnnumeric2)(countnz 

bavnnumeric2)(hitcount )(hist :width 1 bavnnumeric2) 

The hitcount function takes no parameters, except for the standard :top parameter to limit the 
result set to work on.  

Multiple aggregation requests are combined into one aggregation specification in the request. In this 
case the sequence of the aggregation data in the response MUST be identical to the sequence they 
were requested.  



 

25 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

The refine function is specified in the Refine Function section.  All other supported functions are 
specified in the following table. 

Function Parameters 

min :top <n> - Optional parameter that specifies the number of query hits to use as basis for the 
result. 

Max :top <n> - Optional parameter that specifies the number of query hits to use as basis for the 
result. 

Sum :top <n> - Optional parameter that specifies the number of query hits to use as basis for the 
result. 

hitcount :top <n> - Optional parameter that specifies the number of query hits to use as basis for the 
result. 

count :top <n> - Optional parameter that specifies the number of query hits to use as basis for the 
result. 

countnz :top <n> - Optional parameter that specifies the number of query hits to use as basis for the 
result. 

hist :top <n> - Optional parameter that specifies the number of query hits to use as basis for the 
result. 

:sorder <lexasc|lexdesc> - Optional parameter that specifies sort order as lexically ascending 
or lexically descending, respectively. 

:cutfreq <n> – Optional parameter that specifies the minimum frequency for an aggregation 
bucket to return. For example would n=2, return only aggregation buckets with more than 2 
entries. 

:cutminbuckets <n> - Optional parameter that specifies the minimum number of aggregation 
buckets to return before frequency cutting (:cutfreq) takes effect. Use this to avoid returning 
too few aggregation buckets.  

:cutmaxbuckets <n> - Optional parameter that specifies the maximum number of aggregation 
buckets to return. 

:prefix <string> - Optional parameter that specifies to return only aggregation buckets that 
contain this string prefix.  If the aggregator is not a string aggregator, this is not applicable. 

The :width, :buckets and :unique parameters are specified elsewhere in this specification. 

Refine Function 

Refine differs from the aggregation functions covered in the previous section in that the specification 
does not follow the same ABNF grammar. Refine functions are specified by the following ABNF 

grammar instead: 

refinerequest = "(" "refine" internalmanagedpropertyname SP bucketcount bucketspecifications 

")" 

internalmanagedpropertyname = 1*ALPHA 

bucketcount = 1*DIGIT 

bucketspecifications = 1*bucket ;The number of buckets MUST be equal bucketcount 

bucket = namelength "'" bucketname ; bucketname MUST be namelength length.   

namelenght = 1*DIGIT 

bucketname = 1*UTF-8-octets  

UTF-8-octets are the characters that are present in the index after tokenization and normalization, 

as specified in [MS-FSIN] section 2. 

%5bMS-FSIN%5d.pdf


 

26 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Example: (refine bavnstring1 2 3'w01 3'w02) 

In this example, the aggregation buckets to recalculate are w01 and w02. In this case w01 and w02 

represent two values in the response for the managed property "string1". The refine method does 
not take optional parameters.  

Collapse Field Specification Length (4 bytes): This is an optional field of type uint32_b that 
specifies the length of the collapse field specification field. 

Collapse Field Specification (variable): This is an optional UTF-8 encoded, variable-length 
string that specifies the name of the managed property associated with the collapse function. 
Collapsing occurs only if both this field and the Field Collapsing bit flag are specified. Sorting MUST 
be enabled for the managed property on which collapsing is performed, and the property MUST be 
numeric or of type datetime. 

Parsed Query (variable): This is an optional variable-length string that specifies the parsed query, 
which is always the last information in a request. This field contains one uint32_b field that 
specifies the approximate number of entries in the query stack, followed by one variable length 

chunk that contains the serialized query stack. Because the number of entries is approximate, the 
protocol client / protocol server MUST not depend on that the number of entries is exact to unpack 
the query stack. 

The query stack contains operators with optional features and information about the origin of the 
operator. The length of the serialized parsed query stack is the length of the request minus the 
lengths of the fields that were already read. The length of each operator on the stack is variable. 
The origin information specifies which feature that added the operator to the query, such as whether 
the operator was added automatically by the protocol client or specified in an end user request. The 
operators take varying numbers of parameters, and some operators also take operands. 

For example, the expression "AND (term1, term2)" is represented as one AND operator. A separate 

parameter that occurs after the AND expression on the serialized stack specifies the arity of the 
AND expression. In this example, there are two operands, term1 and term2, that are the next 
string term operators. The operands are themselves separate operators. 

The operators are serialized to the stack in a depth first order. For the expression 
"AND(term1,OR(term2,term3),term4)", the order of the operators on the stack is "AND", "term1", 
"OR", "term2","term3", "term4". The query is shown as a tree in the following figure, and the 
resulting stack is shown in the figure after the following figure. 

 

Figure 3: Query node tree 

%5bMS-OFCGLOS%5d.pdf


 

27 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

 

Figure 4: Serialized stack 

An operator is represented as a uint32_b field, where the leftmost 12 bits specify the operator 
type. Bits 12-19 specify the origin if origin information is available. Bits 20-31 specify the operator 
features enabled. Operands that are associated with the operator are specified next. These operands 
have their own feature fields and parameters, depending on the operator type. Operand parameters 

are not associated with the original operator. The syntax is specified in the following table 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Operator type Origin  Feature 

Feature fields (optional, length depending on the feature specification) 

Operator parameters (variable, depending on operator type) 

Operator type (12 bit): The available operator types are specified in the following table. See 
section 2.2.6.1 for specifications for each operator type. 

Value Operator 

0 OR operator. 

1 AND operator. 

2 AND NOT operator. 

3 RANK operator. 

4 String term operator. 

5 Numeric term and numeric ranges. 

6 PHRASE operator. 

8 Prefix wildcard. The operand string term MUST NOT contain wildcard characters, and only the 
prefix wildcard is supported. This SHOULD be an optimized wildcard operator, rather than a 
normal wildcard operator. 



 

28 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Value Operator 

9 Wildcard operator that MUST include wildcard tokens. 

11 ANY operator. This matches any of the items that are in the query. 

12 NEAR operator.  

13 ORDERED NEAR operator. 

14 IN operator. 

15 Internal property region operator. 

16 Complete internal property region operator.  

17 Internal property region RANGE operator. 

18 COUNT operator 

19 Internal property region EQUALS operator.  

20 Internal property region STARTS WITH operator. 

21 Internal property region ENDS WITH operator. 

22 XRANK operator. 

23 EVERYTHING operator. 

Operator Origin (8 bit): This SHOULD be used to specify which feature that added the operator to 
the query stack, or to specify that the behavior of the operator was modified. For example, the 
protocol client sets a bit to specify that a string term was added as a consequence of stemming. 
Another example is that the protocol client can use origin information to comment operators so that 
the protocol server can do hit highlighting differently if hit highlighting is enabled. It can also use 

the original origin to determine what the real query from the user was when calculating rank.  If this 

field is not used, it is set to 0. Values for the field are specified in the following table. 

Value Feature name Meaning 

0 Original The query operator came from the user. No modification to operator 

1 Automatic filter Automatically applied filter on operator. Operators with filtered origins 
SHOULD NOT influence rank. 

3 Approximate 

match 

Operator is an approximation. Related to spell-check features. 

5 Lemmatization Added because of stemming. 

6 Proper name The operator was identified as being the name of a company or other 
official entity. 

7 Similar  Operator added as a consequence of searching for similar documents 

8 Query boost Operator impacted by some type of query boost. 

Feature (12 bit): If a feature is enabled in the feature field of the operator, the corresponding 
payload occurs immediately after the uint32_b field that specifies the operator. The amount of data 



 

29 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

in this payload depends on the enabled features. Not all features increase the payload that the 
protocol server sends to the protocol client. The features are specified in the following table. 

Value Feature name Meaning 

0x00100000 Weight value An operator SHOULD be weighted differently than default when 
calculating rank. Weight is applicable only for string terms.  

0x00400000 Dictionary 
normalization 

Used to override the values for word term frequencies.  

0x00800000 Exact hit This operator is enclosed in a filter. Result rank SHOULD NOT be 
impacted by the operator when this is set. This feature does not add 
any data to the payload. 

0x01000000 Return internal 
property region 

This feature applies only to internal property region operators. It 
specifies that the current internal property region, and all sub-
regions SHOULD be returned.  

This enables searching in a deeper internal property region without 
limiting the returned data to the deeper internal property region. 
This feature does not add any data to the payload. 

The fields are read in the same order as they are specified in the following sections. The "Exact hit" 
and "Return internal property region" features are represented by flags that specify processing 
options rather than payload content, therefore they are not associated with separate subsections.  

Weight 

A uint32_b field is present if the weight field is set for an operator. The normal weight for a term 
is 100, and the number specified is relative to this weight. For example, if the weight field contains 

a value of 200, then the operator is twice as important in a relevancy calculation. 

Dictionary Normalization 

If this feature is enabled on a string term operator, local and global term frequencies are specified 

as parameters. This is not applicable to operators other than term operators. The structure of the 
payload is specified in the following table. 

Parameter 

type Description 

uint8 stored 
as uint32_b 

Number of field importance levels in search indexes for which normalized result 
occurrences are specified. A 32-bit space is reserved for this field in the message, but 
only the 8 first bits are used. The remaining 24 bits MUST be ignored. Indexes with 
multiple levels is supported; see [MS-FSSCFG] section 2.8.5.3.1 for details. For an 
implementation without levels, the term frequency count for each level can be summed 
up into a single count by the protocol server. 

This value specifies the number of uint32_b fields that are serialized sequentially in the 
next part of the payload. 

uint32_b * X The number of uint32_b variables, where X is the numeric value in the initial 8 message 
bytes. These variables represent the number of times the term is present in the query 
result set per level of the search index. 

uint8 stored 
as uint32_b 

Number of field importance levels in the search indexes for which normalized global 
occurrences are specified.  A 32-bit space is reserved for this field in the message, but 
only the 8 first bits are used. The remaining 24 bits MUST be ignored. An index with 
multiple levels is supported as specified in [MS-FSSCFG] section 2.8.5.3.1. For an 

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf


 

30 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Parameter 

type Description 

implementation without levels, the normalized global occurrence count for each level can 
be summed up into one single count by the protocol server. 

This value specifies the number of fields stored sequentially in the next part of the 
payload. 

uint32_b*X Specifies the number of times the term is present in the whole search index. One value is 
specified per level of the search indexes. The number of fields is specified as the numeric 
value in the leftmost 8 bytes of the field. 

These values SHOULD override the frequency values of the protocol server to specify consistent 
term frequency when calculating rank, so that the same word has the same frequency on different 
search indexes and different protocol servers.  

These values MUST be normalized against an imaginary search index of 10 million items. An 

example is that if the frequency of a term is set to 5, and the search index contains 1 million items, 

the size of the search index is ignored and the normalized value for this message is 50.  

For protocol server implementations that do not use term frequency as part of calculating rank, they 
MAY be ignored.  

2.2.6.1   Query operators 

The protocol server MUST support all operators specified in this section, but some operators MAY be 

treated as dummy operators and have no effect if it does not fit with the protocol server 
implementation. An example would be that a protocol server that does not implement ranking,  
would ignore the RANK and XRANK operators.   

OR operator 

This operator takes one parameter, which is the arity, or the number of operator nodes on the stack 
on which this operator operates. For example, an OR operator with an arity of three operates on 3 

operands from the stack. This maps to an expression such as "or (operand1, operand2, operand3)".  

The arity is represented as a uint32_b field. Only items that match at least one OR operand MUST 
be returned. Matching items SHOULD receive a higher rank when more OR operands match; 
however, this is implementation-dependent. 

AND operator 

This operator takes one parameter, a uint32_b field that specifies the arity of the operator. Only 
items matching all AND operands MUST be returned. 

AND NOT operator 

This takes one parameter, the arity of the operation. The arity is represented by a uint32_b field. 
Only items that match the first operand from the stack without matching any of the rest of the 
operands MUST be returned.  

RANK operator 

This SHOULD increases the rank on results based on whether an operation hits in a result already 
present in the result set. This is not an absolute requirement for the protocol because rank 

calculations are implementation-dependent.  Its use does not impact the recall of the query. The 

%5bMS-OFCGLOS%5d.pdf


 

31 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

amount of rank increase is implementation specific. The RANK operator takes two parameters, 
which MUST be present, as specified in the following table.  

For example, a query is searching for the term "hello". The query ranks results higher if they also 
contain the term "world". This is accomplished with a RANK operator that uses "hello" as its first 

operand, and "world" as the second. The RANK operation supports multiple occurrences of operands 
for increasing rank.  

Parameter type Description 

uint32_b Arity 

uint32_b MUST be set to 0.  

String Term  

This represents a query token for which to search for. A string term operator can specify only the 
query token, or it can also specify a specific index to search in.  A uint32_b field that specifies the 

length of the index name occurs immediately after the operator. If the length is greater than 0, then 
a UTF-8 encoded index name that contains that number of bytes occurs after the length field. A 
uint32_b field that specifies the length of the query token in bytes occurs next followed by a query 
token whose length is the one that was specified. The string term token parameter is encoded as 
UTF-8, as specified in [RFC2279]. 

There is no end-of-term marker, so an implementation processes the token string by reading the 
number of bytes specified as length. 

All string term values are lowercase. Any uppercase letters in a string term specify metadata about 
the string term. All string terms are suffixed by an uppercase letter that specifies the type of the 
term. The suffix letters are specified in the following table. 

Letter Type of term 

T Token. The String term is a non-lemmatized term 

L Lemmatized. The string term is a lemmatized form. 

Lemmatized string term operators are suffixed by an "L". All string term operators that are not 
lemmatized are suffixed by a "T". For example, a query that does not use stemming represents the 
original non-lemmatized form of the string term "car" as "carT". 

This enables matching only one form of a word. The protocol server stores the original term suffixed 

both with a "T" and an "L", so queries for which lemmatization is enabled will match the term 
suffixed by "L", while queries that are not lemmatized will still match only the original term. By 
having both in the search index, a query does not explicitly search for variations.  

A protocol client normalizes query token characters, as specified in section 1.5, before serializing 
them to a string term operator. Failure to do so correctly could lead to reduced recall. 

Numeric Term and Ranges 

This represents a numeric query token on the query stack. A numeric term operator is followed on 

the stack by a uint32_b field that specifies the length of the name of the index to search. If the 
length is zero, the name of the index is not specified. If the length is greater than 0, then the next 
item on the stack is an UTF-8 encoded index name whose length is the number of bytes specified. A 

http://go.microsoft.com/fwlink/?LinkId=90331


 

32 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

uint32_b field that specifies the length of the numeric term in bytes occurs next, followed by an 
UTF-8 encoded string version of the numeric term of that length.   

Integer values are encoded as 9223372036854775808 + the original integer value . The value 
9223372036854775808 corresponds to the hexadecimal value "0x8000000000000000". Date/time 

values MUST be represented according to their integer value representation. 

When a numeric range is used, this MUST specified by a numeric term string on the form 
[<integer1>;<integer2>]. The calculation MUST be done greater than or equal integer1 and less 
than integer2.  To achieve greater than integer1 instead, add 1 to integer1 before submitting the 
query, while less than or equal can be implemented by adding 1 to integer2.  

Internal property region searches specify integers and datetime values as subpart strings in the 
format "subpart|<numeric string representation>". For example, searching for the integer 30 in the 

subpart "number" of an internal property region, is specified as a search for 
"number|09223372036854775838" in the internal property region. A search for the string "30" is 
still processed as a normal string term in this case. There is a special RANGE operator specified for 
range searches in internal property regions, which does not use this encoding.  See the Internal 

Property Region RANGE operator section for a specification of this operator.  

PHRASE operator 

Operands of this operator are processed as a phrase when evaluating a query. An operand is 
followed by a uint32_b field that specifies the arity of the operator. The next uint32_b field 
specifies the length of the name of the index. If this length is greater than 0, then an UTF-8 encoded 
index name that contains that number of bytes occurs after the length field. This index name 
specifies the part of the search index on which to process the phrase.  

If an index name is specified for a PHRASE operator, this index name MUST also be specified for 
each operand. The operands do not inherit the index from the PHRASE operator. If the same index 

is not specified for all of the operands, the behavior is undefined.  

Only string term operators are valid operands for the PHRASE operator. The PHRASE operator is 
not supported for region searches, and therefore is emulated by using the ONEAR operator with a 

distance of 0. A protocol server can choose to emulate PHRASE operators using AND operators if this 
is needed for performance reasons, sacrificing exactness for performance. For example, searching 
for the phrase "The big new bottle", this could internally be evaluated by the protocol server as the 
phrase "big new bottle" combined with an AND operator and the search term "The", if the term 

"The" was found to be too common for the protocol server to evaluate as part of a phrase. 

Prefix Wildcard  

This SHOULD be an optimized form of the standard wildcard feature, as specified in the next section. 
It only supports prefix-matching. For example, "pref*" matches preferences, while "*erences" is not 
valid. The ordinary wildcard operator MUST be used for other wildcard searches than prefix-
matching. The prefix wildcard operator returns only items that match the prefix term. It takes the 

parameters specified in the following table. All parameters MUST be present, but the length of the 
byte arrays can be 0.  

Parameter 

type Description 

Uint32_b Length of optional index name to match against 

Byte array Index name. Length is specified by the previous parameter. 



 

33 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Parameter 

type Description 

Uint32_b Length of term for which to perform a prefix search. 

Byte array Prefix term for which to search. Length is specified by the previous parameter, and does 
not include the asterisk character. 

Wildcard Operator 

This operator returns only the items that match the parameters of this operator. The wildcard 
characters that are supported are "?", which matches one character, and "*", which matches zero or 
more characters. 

The operator supports the parameters specified in the following table. All parameters MUST be 

present, except for byte arrays whose length can be 0.  

Parameter type Description 

uint8 Wildcard flags to enable/disable features. MUST be set to 0. 

uint32_b Minimum number of characters in expansion  

uint32_b Maximum number of characters in expansion. 

uint32_b Length of optional index name 

Byte array Index name. Length is specified by the previous parameter. MUST be UTF-8 encoded. 

uint32_b Length of wildcard term, including any wildcard tokens. 

Byte array Wildcard term. MUST be UTF-8 encoded.  

ANY Operator 

This takes one parameter, that specifies the arity of the operator. The arity MUST be represented by 
a uint32_b field.  The ANY operator is similar to OR except that rank calculations are not affected 

by the number of operands that match in an item. Instead, a rank calculation uses the highest rank 
of the operands that match. Only items matching at least one ANY operand MUST be returned.  

NEAR Operator 

This takes two parameters. The first parameter is arity of the operator. The second parameter is the 
maximum number of positions (distance) between the operands.  If this distance between operands 
is exceeded, they are not returned. Both fields are of type uint32_b.  

For example, the NEAR operator with the arity of 3 and distance of 2 specifies that all three 

operator nodes are 2 or less positions away from each other altogether.  

Another example, "operator1 string1 string2 operator2" has a distance of two from operator1 to 
operator2. If NEAR has an arity greater than 2, the maximum number of words between the terms 

is counted within the entire expression. 

Complex operators such as OR and RANK can be operands for the NEAR operator. The AND 
operator, the AND NOT operator, and RANGE operators are not allowed as operands.  

The NEAR operator returns only results where the distance is less than or equal to the specified 
distance. 



 

34 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

If the NEAR operator is used with more than 4 operands, or if the NEAR operator is used with the 
RANK operator, the wildcard operator, the OR operator, the ANY operator, or the XRANK operator, 

then the NEAR operator MUST be preceded by an IN operator that has been associated with a 
complete internal property region operand. The NEAR operator is the second operand associated 

with the IN operator.  

ORDERED NEAR Operator 

This operator is similar to the NEAR operator, but the order of the operands is relevant. An ordered 
NEAR operation on the two string operators "string1", "string2" with distance 1 MUST match 
"string1 string2", but not "string2 string1".  An ordered NEAR operator with more than 4 
parameters is the same as a multiple ordered NEAR of 4 parameters combined with a logical AND 
operator. 

The ordered NEAR operator returns only results where the distance is less than or equal to the 
specified distance, and the order is the same.  

If the ordered NEAR operator is used with more than 4 operands, or if the ordered NEAR operator 

is used with the RANK operator, the wildcard operator, the OR operator, the ANY operator, or the 
XRANK operator, then the ordered NEAR operator MUST be preceded by an IN operator that has 
been associated with a complete internal property region operand. This IN operator is associated 

with the NEAR operator as its second operand.  

IN Operator 

This specifies that the operands that follow it apply only to the internal property region that was 
specified as an operand, rather than the entire content of the managed property. The IN operator 
takes one parameter, which is the arity of the operator. This is a uint32_b field. The first operand 
of an IN operator is an Internal property region operator, as specified in the next section.  

The IN operator changes the evaluation of the operands to return only results that contain hits that 

are in the internal property region specified by the first operand.  

Internal Property Region Operator 

The internal property region is a subfield of a managed property. This operator specifies the internal 
property region to which the current operator applies. An IN operator MUST precede an internal 
property region.  The internal property region operator supports the parameters that are specified in 
the following table. All parameters MUST be present, except for the index parameter if its length is 
0. 

Parameter 

type Description 

uint32_b Length of the name of the index 

Byte array Index to search in. Length specified by the previous parameter. MUST be UTF-8 
encoded. 

uint32_b Length of internal property region specification 

Byte array  Internal property region specification. Length specified by the previous parameter. 
MUST be UTF-8 encoded. 

Complete Internal Property Region Operator 



 

35 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

All IN operators MUST be followed by an operand that specifies the internal property region to which 
it limits operands that are associated with it. This operator specifies that the active internal property 

region is the entire managed property. An IN operator that is associated with a complete internal 
property region searches the entire managed property. This enables operators that take internal 

property regions as operands to process complete managed properties. 

The arity of this operator is 0, and it does not have any parameters. 

Internal Property Region RANGE Operator 

This operator MUST be used only for internal property region searches. The numeric term operator 
MUST be used for operating on complete managed properties instead. 

This operator implements the RANGE operator for subfield queries for integer and datetime fields. 
When used, both maximum and minimum values MUST be specified.  The range is calculated as 

greater than or equal to the minimum value, and less than the maximum value. The operator 
parameters are specified in the following table. All parameters MUST be present, except for the 
index parameter when the length of the name of the index is 0. 

In internal property region searches, integers and datetime fields are encoded as strings of the 
format "subfield|<numeric string representation>". For example, the search for the integer 30 in the 
subfield "number" of an internal property region, is specified as "number|09223372036854775837" 

in that property region.  

Parameter 

type Description 

uint32_b Index name length  

Byte array Index name. Length specified by the previous parameter. MUST be UTF-8 encoded. 

uint32_b Length of minimum value specification. 

Byte array  Minimum value. Because this is sent as a serialized byte array, The endianness is the 
same as the underlying computing platform. 

uint32_b Length of maximum value specification.  

Byte array Maximum value. Because this is sent as a serialized byte array, The endianness is the 
same as the underlying computing platform.  

COUNT Operator 

This matches results where an operand exists a specific number of times. The operator takes two 
parameters as specified in the following table. Both parameters MUST be present. 

Parameter type Description 

uint32_b Minimum number of occurrences 

uint32_b Maximum number of occurrences 

The COUNT operator is used on an internal property region. As a consequence, the arity of the 
COUNT operator is 2, which specifies the complete internal property region operator, and a 
string term operand. This operator can be used only for complete internal property regions. It 
supports only operands that are single query terms, phrases or wildcards. Phrases are emulated 



 

36 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

using ordered NEAR with the distance 0, because this protocol does not support phrases in property 
regions.  

The maximum field is exclusive, so to match when a term occurs more than 5 and less than or equal 
10 times, then the minimum number of occurrences is 5 and the maximum is 11.  

The COUNT operator returns results only for string terms that are within the specified minimum and 
maximum occurrence range. 

Internal Property Region EQUALS Operator 

The internal property region EQUALS operator has a fixed arity of 2 and does not take any 
parameters. The first operand is the internal property region specification, and the second operand 
is the comparison value. This operator returns results only where the content of the internal 
property region is equal to the second operand.  

The protocol server emulates an internal property region EQUALS operator for non-property-region 
searches by searching for the internal region begin/end marker combined with the query terms in 
the form of a phrase. For EQUALS, the protocol server adds the marker at both sides of the query 

terms. The internal region marker is the UTF-8 character "c7 82" when using a search index as 
specified in [MS-FSIXDS]. For example: searching an internal property region with the EQUALS 
search for the term "CompleteString" is emulated as a phrase search for 

"0xC70x82CompleteString0xC70x82".  

Internal Property Region STARTS WITH Operator 

The internal property region STARTS WITH has a fixed arity of 2 and does not take any 
parameters. The first operand specifies an internal property region, and the second operand is the 
comparison value. It returns results only where the beginning of the internal property region is 
equal to the second operand. 

The protocol server emulates an internal property region STARTS WITH operator for non-property-

region searches by searching for the internal region begin/end marker combined with the query 
terms in the form of a phrase. For STARTS WITH the marker is added at the front of the query 

terms. The internal region marker is the UTF-8 character "c7 82" when using a search index as 
specified in [MS-FSIXDS]. For example, an internal property region starts with a search for the term 
StartofString is emulated as a phrase search for "0xC70x82StartofString".  

Internal Property Region ENDS WITH Operator 

The internal property region ENDS WITH operator has a fixed arity of 2 and does not take any 

parameters. The first operand MUST be an internal property region specification. The second 
operand contains the comparison value. It returns only results where the end of the internal 
property region is equal to the second operand.  

The protocol server emulates an internal property region ENDS WITH operator for non-region 
searches by searching for the internal region begin/end marker combined with the query terms in 
the form of a phrase. For ENDS WITH the marker is added at the end of the query terms. The 

internal region marker is the UTF-8 character "c7 82" when using a search index as specified in [MS-
FSIXDS]. For example, an internal property region ENDS WITH search for the term String is 

emulated as a phrase search for "String0xc70x82".  

XRANK Operator 

This SHOULD increase the rank on results based on whether an operator hits in a result already 
present in the result set. It MUST NOT impact the recall of the query. The XRANK operator differs 

%5bMS-FSIXDS%5d.pdf


 

37 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

from the normal RANK operator, in that the protocol client specifies how much to increase/decrease 
the rank.  The operator parameters are specified in the following table. 

Parameter 

type Description 

uint32_b Arity 

uint32_b Fixed integer to add to results in the result set if the results contain the operators on 
which to perform the XRANK operation. Negative values SHOULD reduce rank. Negative 
values MUST be stored in two’s complement form.  

uint32_b Boost all hits in the result set. It is disabled if it is set to 0, which specifies that only hits 
that have a calculated rank are changed.  

Everything operator 

This matches all documents in the search index. It has an arity of 0, and takes no parameters. 

2.2.7   Query Response 

This response message from the protocol server to the protocol client contains the result of a query 
request sent from the protocol client to a protocol server.  The message format is specified in the 
following table. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length 

Message code 

Channel identifier 

Enabled features 

Offset 

NumHits 

TotalHits 

MaxRank 

Timestamp 

Dataset (optional) 

GenerationTable (optional) 

Result Sorting Table (optional) 



 

38 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

AggregationData (optional) 

Field Collapsing with Collapsed Results Removed (optional) 

Search Coverage (optional) 

… 

… 

… 

Hit list (optional) 

Message length (4 bytes): This is of type uint32_b and specifies the length of the message in 
bytes, excluding the length of this field. The length MUST be less than 500,000,008 bytes. 

Message code (4 bytes): This is of type uint32_b and contains the value 217. 

Channel identifier (4 bytes): This is of type uint32_b and specifies the identifier that associates 
the request to the response (section 3.2.1). 

Enabled Features (4 bytes): This is of type uint32_b, and it specifies the response features that 
the protocol server enabled.  Values are specified in the following table. All other bits MUST be set to 
0. 

Bit mask Referenced name Meaning 

0x00000001 Dummy flag.  Not used. MUST be set to 1. 

0x00000002 DatasetPresent When this is set, each result entry in the hit list field contains a 
Dataset field.  

0x00000004 SiteIdPresent When this is set, each result entry in the hit list field contains a 
SiteID field. 

0x00000010 SortDataPresent Specifies that the result sorting field is present in the message.  

0x00000020 AggregationDataPresent Specifies that the aggregationdata field is present in the 
message. 

0x00000040 CoveragePresent Specifies that search coverage information is present in the 
message in the search coverage field. 

0x00000080 GenerationPresent This flag MUST be set and the GenerationTable field MUST be 

present in all query responses. 

0x00000100 CollapseRemovePresent When this is set, the message MUST contain information 
associated with field collapsing in the collapsed field 
specification field. In addition, a count value MUST be included 
for each query hit in the query hit list as specified in the Hit List 
section. 

Offset (4 bytes): This is of type uint32_b and specifies the offset from the first result item to the 
first returned result item. 



 

39 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

NumHits (4 bytes): This field is of type uint32_b and specifies the number of item identifiers in 
this query response. If this value is greater than 0, then a query hit list that contains the same 

number of items is included in the message. 

TotalHits (4 bytes): This is of type uint32_b and specifies the total number of items matching the 

query from the search index managed by this protocol server component. 

MaxRank (4 bytes): This is of type uint32_b and specifies an estimate of the maximum rank that 
can be calculated for an item, based on its correspondence to or deviation from the query terms. 
This value is not precise, so the protocol client MUST NOT interpret the rank value for each item and 
the maxrank field as normalized values. Hence, the protocol client cannot use this field to 
determine how relevant an item match is on a percentage scale. 

The protocol client and protocol server do not impose any restrictions on the range and values of 

rank fields, except that the rank values SHOULD specify how well a query matches an item that is 
contained in the same query hit list, and that it can be stored in a uint32_b. A higher value means 
an item is believed to be more relevant to a query. 

Timestamp (4 bytes): This is of type uint32_b and is not used. It is set to 0, and the protocol 
client MUST ignore it. 

Dataset (4 bytes): This is an optional field of type uint32_b and is contained in the message 

payload if the DatasetPresent flag is set. It is set to 0, and the protocol client MUST ignore it. 

GenerationTable (variable): This optional field is a variable-length byte array, and MUST be 
included in the response if the GenerationPresent flag is set, and identifies which versions of the 
search indexes the query hits are from. The format of this field is specified in the following table. 

Field 

Type / 

Length Value Meaning 

Length Uint32_b This value MUST 
be set to 8. 

Number of bytes the generation table consists of, 
not counting this field. 

Leaf uint32_b This value MUST 
be set to 1. 

Indicates that protocol server that responded was a 
leaf node. 

Generation 
identifier 

uint32_b Greater than or 
equal to 0. 

Numeric value representing the generation of 
indexes used when evaluating the search query.  

Result Sorting Data (variable): This optional field is a variable-length string that specifies the 

results of sorting the response from the protocol server if the SortDataPresent flag is set in the 
enabled features field. The field consists of two data chunks, SortIndex and SortData, which are 
specified in the following sections. The protocol client receives this data so it can merge sorted lists 
of items from multiple protocol servers into one list of items. These items can then be retrieved in 
the result details request stage.  For example, to sort results from multiple protocol servers on the 
title of an item, the protocol client needs to know the titles of all items returned from all protocol 
servers. 

The SortIndex and SortData chunks appear in the message in the order they are specified here. 

SortIndex 

This is a series of numhits fields that specify the byte offset of the next SortData field from the 
beginning of the previous SortData field.  The first SortData field occurs at offset 0 relative to the 
beginning of the SortData buffer. The first SortIndex entry specifies the offset to add to the 
beginning of the SortData field to locate the second element in the SortData buffer.  The next 



 

40 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

SortIndex entry specifies the offset to add to the previous computation to locate the third element 
in the SortData buffer, and so on.  The last entry specifies the address for the beginning of the 

SortData buffer. This is specified in the following table. 

Field 

Type / 

Length Value Meaning 

SortIndex[1] uint32_b Greater than or 
equal to 0 

Byte offset relative to the beginning of 
data area for item number 2. 

SortIndex[2] uint32_b Greater than or 
equal to 0 

Byte offset relative to the beginning of 
the data area for item number 3 

... uint32_b Greater than or 
equal to 0 

... 

SortIndex[Number of Items 
returned] 

uint32_b Greater than or 
equal to 0 

Byte offset relative to the first byte of 
the SortData field. 

SortData 

The numhits field specifies the number of item data areas. The first element begins at offset 0 
relative to the beginning of the SortData buffer. The second element begins at the offset specified 

in the SortIndex[1] field and so on. The following table shows the scheme of the SortData data 
structure. 

Item number Beginning of data area End of data area Meaning 

1 0 SortIndex[1]-1 Byte array that contains 
values of managed 
property sorted for item 1 

2 SortIndex[1] SortIndex[2]-1 Byte array that contains 
values of managed 
property sorted for item 2 

...   ... 

NumberOfDocs SortIndex[NumberOfDocs-
1] 

SortIndex[NumberOfDocs]-
1 

Byte array that contains 
values of managed 
property sorted for item 
NumberOfDocs 

Each item data area contains the values on which to sort the managed properties. The protocol 
server concatenates the managed properties to perform multi-level sorting, but only after each 

managed property is encoded. For example, for a multi-level sort on a managed property of type 
int64_b and one of type datetime64_b, the managed properties are encoded separately, and then 
concatenated. Encoding and decoding of the internal property types in an item data area, and the 
value for each field is specified in the following table. 

Type 

Value decoding/encoding for 

ascending sort order  

Value decoding/encoding for 

descending sort order  

int64_b Value XOR 0x8000000000000000 Value XOR 0x7fffffffffffffff 

uint64_b None Value XOR 0xffffffffffffffff 



 

41 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Type 

Value decoding/encoding for 

ascending sort order  

Value decoding/encoding for 

descending sort order  

datetime64_b None Value XOR 0xffffffffffffffff 

float32_b Encode: if value >= 0 XOR 
0x80000000 else XOR 0xffffffff 

Decode: if value <0 XOR 
0x80000000 else XOR 0xffffffff 

If value >=0 XOR 0x7fffffff 

Byte array that contains an 
UTF-8 encoded string.  

None 0xFF - value for each byte in the 
byte array 

AggregationData (variable): This optional field is a variable-length byte array that contains 
aggregation information requested in the query request. It MUST appear in the message if the 

AggregationDataPresent flag is set. The field format is specified as follows: 

AggrDataLen (4 bytes): This field is of type uint32_b and specifies the number of subsequent 

bytes in the aggregationdata field. 

Version (4 bytes): This field is of type uint32_b and specifies the version of the aggregation 
specification. It MUST be set to 0x01000001. 

AggrElement[N] (variable): An aggregation information element that is contained in the 

aggregation data. A set of aggregation information elements is returned for each aggregator. The 
total number of elements (n) is related to the aggregator type and the aggregation data that was 
requested in the query request. Format and values are specified in the following sections. 

AggrElement Generic Field Format 

This section specifies the generic field format for each aggregation information element in the 
aggregation data AggrElement field.  

Field 

Type / 

Length Value Meaning 

signature uint32_l A 32-bit 
bitmask that 
contains 
multiple data 
elements  

See the following table for a specification of the 
contents and how to interpret it. 

internal uint32_l Any unsigned 
32-bit value 

This field MUST be set to 0.  

Aggregation 

Element Data 

Variable-

length 
field 

 The length and encoding of this field is specified in the 

AggrElement format for the specified aggregator. It is 
based on the Data Type (T) as specified in the 
Aggregation Data types section, and the Aggregator 
Type (A) of the signature, as specified in the 
Aggregation Request Types section. 

The syntax for each aggregation element type is 
specified in separate sections following the Aggregation 
Data Types section. 

The signature is a bitmask that is specified as follows. 



 

42 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

I B M A T D P 

Fields are specified as follows. 

P (1 bit): MUST be set if a subset of the search index partitions did not return any aggregation 
data. As a consequence the aggregation result could be incomplete. 

D (6 bit): Data Type of the indexed content data the aggregation is based on. Data types are 
specified in the Aggregation Data types section. 

T (7 bit): Data Type of the aggregation data, as specified in the Aggregation Data types section. 

A (15 bit): Aggregator type, as specified in the Aggregation Request Types section. 

M (1 bit): MUST be set if aggregation cut-off occurred. If set, the maxerror field MUST be present 
in the AggrElement. 

B (1 bit): MUST be set if the element contains histogram aggregation buckets. 

I (1 bit): MUST be set if the aggregation buckets are indexed and the Aggregation Element Data 
contains the number of aggregation buckets present. 

For example, if the protocol server used the sum function on an aggregated data set where the 
indexed data type was int32_l, and the resulting aggregated data type was int64_l, then D is equal 

to 10, T is equal to 11 and A is equal to 2. See the Aggregation Data Types section for a list of data 
types. 

D and T can be different types in cases where the result of the aggregation function on the indexed 
content data cannot be represented in the same data type. For example, a sum of many uint32_l 
values can overflow the data type and needs to be represented as a uint64_l in the aggregation 

data. 

Aggregator Request Types 

Aggregation results are specified in several formats. For example, aggregation function results for 
min or max functions are specified differently from aggregation buckets results for hist requests.  
The type of aggregation is contained in the signature field, and it specifies aggregator types from 
the following table.  The syntax for the AggrElement associated with the aggregator type is 
specified in the AggrElement Syntax column of the table. 

Aggregator 

Type Value 

Aggregation 

function  Description AggrElement Syntax 

0 Max Maximum value contained in the 
aggregated data set 

Specified in the Aggregation 
Function Result Syntax 
section. 

1 Min Minimum value contained in the 
aggregated data set 

Specified in the Aggregation 
Function Result Syntax 
section. 

2 Sum Aggregated sum across the aggregated 
data set 

Specified in the Aggregation 
Function Result Syntax 



 

43 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Aggregator 

Type Value 

Aggregation 

function  Description AggrElement Syntax 

section. 

5 hist :buckets 
<n> 

Count for each aggregation bucket 
when a fixed number <n> buckets are 
requested.  

Aggregation bucket index, 
as specified in the 
Aggregation Bucket Syntax 
section. 

100 Hitcount Query hits used for generating the 
histogram. Total number of query hits 
on which the aggregated values and 
histogram are based. 

Specified in the Aggregation 
Function Result Syntax 
section. 

101 Count Sample Count. An aggregator might 
take on multiple values for an item. 
This is reflected in the Sample Count 

value, which denotes the number of 
samples from which the histogram was 
computed. 

Specified in the Aggregation 
Function Result Syntax 
section. 

102 Countnz The number of query hits or unique 
items that contain at least one value 
for this aggregator. 

Specified in the Aggregation 
Function Result Syntax 
section. 

103 hist :buckets Count for each aggregation bucket 
when the buckets are of variable width 

Aggregation bucket index, 
as specified in the section 
Aggregation Bucket Syntax. 

104 hist :buckets 
:unique 

Count for each aggregation bucket 
when individual buckets are requested 
for each unique value in the result set 

Individual buckets that 
contain unique values, as 
specified in the Unique 
Value Individual Bucket 
Syntax section. 

105 hist :width Count for each aggregation bucket 
when the buckets are of fixed width 

Aggregation bucket, as 
specified in the Content 
Aggregation Bucket Syntax 
section.  

106 Refine Count for each aggregation bucket 
when the request is to refine the 
previous aggregation  

Aggregation bucket as 
specified in Refined 
Aggregation Buckets 
section. 

Aggregation Data Types 

The data type derived from the signature field is specified in the following table. For each data type, 
the corresponding field encoding is specified in the Encoding column. 

Data type identifier Description Encoding 

1 String UTF-8 

2 8-bit unsigned integer 8-bit value 

3 16-bit unsigned integer uint16_l 

4 32-bit unsigned integer uint32_l 



 

44 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Data type identifier Description Encoding 

5 64-bit unsigned integer uint64_l 

6 96-bit unsigned integer uint96_l 

7 160-bit unsigned integer uint160_l 

8 8-bit signed integer 8-bit value 

9 16-bit signed integer int16_l 

10 32-bit signed integer int32_l 

11 64-bit signed integer int64_l 

12 96-bit signed integer int96_l 

13 160-bit signed integer int160_l 

14 32-bit floating point value as specified in [IEEE754] float32_l 

Aggregation Function Result Syntax 

This specifies the syntax for the serialized AggrElement field that represents the result of an 
aggregation function that returns one value. 

signature (4 bytes): This field is of type uint32_l, and it specifies the signature of the 
aggregation request, as specified in the AggrElement Generic Field Format section. 

internal (4 bytes): This field is of type uint32_l, and it MUST be set to 0. 

value (integer or float variable):  The type and length of this field is specified by the aggregated 
data type (T) in the signature field.  

Aggregation Bucket Syntax 

This specifies a serialized aggregation bucket: 

signature (4 bytes): This field is of type uint32_l, and it specifies the signature of the 
aggregation request, as specified in the AggrElement Generic Field Format section. 

internal (4 bytes): This field is of type uint32_l, and it MUST be set to 0. 

aggregation buckets (4 bytes):  This field is of type uint32_l, and it specifies the number of 
aggregation buckets in this aggregation element. It is greater than or equal to 0. 

aggregation bucket[N] (variable):  Represents the aggregation buckets. The aggregation 
buckets are specified as an array that contains the following fields. 

index (4 bytes): This field is of type uint32_l, and it specifies the index for the aggregation 
buckets. Aggregation buckets are specified as an array where the index corresponds to the fixed 

length buckets in the request.  This field is greater than or equal to 0. 

count (4 bytes): This field is of type uint32_l, and it specifies the number of aggregation buckets. 

This is the number of samples that occur in the specified range in the aggregated result set. It is 
greater than or equal to 0. 

Content Aggregation Bucket Syntax 



 

45 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

This specifies a serialized aggregation bucket: 

signature (4 bytes): This field is of type uint32_l, and it specifies the signature of the 

aggregation request, as specified in the AggrElement Generic Field Format section. 

internal (4 bytes): This field is of type uint32_l, and it MUST be set to 0. 

aggregation buckets (4 bytes):  This field is of type uint32_l, and it specifies the number of 
buckets in this aggregation element. It is greater than or equal to 0. 

aggregation bucket[N] (variable):  Represents the aggregation bucket format as specified in the 
following table. The aggregation buckets are specified as a pair of fields. The two fields are specified 
as follows: 

value (Data Type (T)): Data value associated with this aggregation bucket. The protocol server 
sends one bucket per value, which is greater than or equal to 0. The type and length of the data 

type are contained in the signature field. 

count (4 bytes): This field is of type uint32_l, and it specifies the number of samples in the 

aggregated result set that contain the value specified in the value field of the aggregation bucket. 
MUST be greater than or equal to 0. 

Unique Value Individual Bucket Syntax 

This specifies the aggregation bucket when the individual buckets for each unique value were 

contained in a previously retrieved result set. 

signature (4 bytes): This is of type uint32_l, and it specifies the signature of the aggregation 
request, as specified in the AggrElement Generic Field Format section. 

internal (4 bytes): This field is of type uint32_l, and it MUST be set to 0. 

maxerror (4 bytes): This field is of type uint32_l, and it specifies the maximum count for 
aggregation buckets that are not displayed in the result set if a cutoff occurs. Otherwise, it is set to 
0. 

buckets (4 bytes): This field is of type uint32_l, and it specifies the number of aggregation 
buckets in this aggregation element. It MUST be a positive integer. 

bytes (4 bytes): This field is of type uint32_l, and it specifies the total number of bytes in the 
buckets of this aggregation element, which are the all of the data elements that occur after this 
field. It MUST be a positive integer. 

bucket[buckets] (variable): Aggregation buckets as specified in the following table. 

Field Type / Length Value Meaning 

strlen uint32_l Greater than or 
equal to 0. 

Length of the string representing this 
aggregation bucket 

str Character array whose 
length is specified in the 
strlen field 

UTF-8 
characters 

The text string representing this aggregation 
bucket 

count uint32_l Greater than or 
equal to 0. 

The number of samples in the bucket in the 
aggregated result set that contain the 
specified string 



 

46 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Refined Aggregation Bucket Syntax 

This syntax specifies the format for aggregation buckets when the protocol client requests a 

refinement of a previously-retrieved aggregation. When more than one aggregator is requested in 
the query, the aggregation elements of a specific aggregator type appear in the message in the 

same sequence as requested in the query. 

signature (4 bytes): This is of type uint32_l, and specifies the signature of the aggregation 
request, as specified in the AggrElement Generic Field Format section. 

internal (4 bytes): This is of type uint32_l, and it MUST be set to 0.  

buckets (4 bytes): This is of type uint32_l, and it specifies the number of aggregation buckets in 
this aggregation element. It MUST be a positive integer. 

count[buckets] (4 bytes): A field of type uint32_l that specifies the number of samples in the 

aggregated result set that contain the specified string. This field MUST be greater than or equal to 0. 

Field Collapsing with Collapsed Results Removed (variable): This optional field specifies how 

the managed properties were collapsed.  It MUST appear in the message if 
CollapseRemovePresent flag is set in the enabled features field. Field collapsing is performed 
only on numeric fields. The field is formatted as specified in the following table.   

Field 

Type / 

Length Meaning 

NumberNotCollapsed uint32_b Number of items that had no value or that are 
undefined for the managed property on which 
the collapsing is performed  

NumberCollapsed uint32_b Number of items that were collapsed. 

CollapseValue[0] uint64_b Value of the collapsed managed property 

CollapsedValueCount[0] uint32_b Number of items with the value specified in the 
CollapseValue[1] field in the collapsed 
managed property 

… … … 

CollapseValue[NumberCollapsed] uint64_b Value of the collapsed managed property 

CollapsedValueCount[NumberCollapsed] uint32_b Number of items in the collapsed managed 
property that contain the value specified in 
Value[NumberPairs] 

Search Coverage  

This field appears in the message if CoveragePresent flag is set in the enabled features field. 
The field format is specified in the following 3 fields.  

internal (8 bytes): This field is of type uint64_b, and contains information specific to a particular 

implementation of the protocol server. It is greater than or equal to 0, and the protocol client MUST 
ignore it. 

nodes (4 bytes):  This field is of type uint32_b, and specifies the number of index partition nodes 
associated with the evaluation of the query. It is associated with a specific protocol server 
implementation, and is greater than or equal to 0. The protocol client SHOULD ignore it. 



 

47 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

fullResult (4 bytes): This field is of type uint32_b, and specifies whether the query result is 
complete. It MUST be set to 0 if a partial result is returned, and it MUST be set to 1 if the query 

result is complete. 

Hit List (variable): This field appears in the message if the numhits field is greater than 0. The 

number of occurrences of the field is contained in the numhits field.  The fields are specified as 
follows.  

docid (4 bytes):  This field is a positive integer of type uint32_b, and it specifies an item identifier 
that is unique to each protocol server, rather than globally unique. The most significant bit in the 
docid field specifies whether or not the protocol server performed field collapsing for this document. 
If it is set to 1, field collapsing has taken place. The most significant bit MUST be set to 0 to retrieve 
the actual docid field, which can be used in subsequent requests. 

metric (4 bytes): This field is a positive integer of type uint32_b, and it specifies the rank for this 
result. 

part_id (4 bytes): This field is a positive integer of type uint32_b, and it specifies the identifier of 

the index partition that contains the query hit. This is used when constructing the docids field in the 
corresponding result details request.  

docstamp (4 bytes): This optional field is of type uint32_b, and it specifies when the item was 

indexed. The age is specified as the number of seconds elapsed after 1970-01-01 UTC. 

siteid (4 bytes): This optional field is a positive integer of type uint64_b, and it MUST contain the 
value of the managed property used for field collapsing if the SiteIdPresent flag in the enabled 
features field is set. 

count (4 bytes):  This optional field is a positive integer of type uint32_b, and it specifies the 
number of items in this collapse group.  MUST be present if the CollapseRemovePresent flag in 
the enabled features field is set. 

2.2.8   Result Details Request 

This message contains a result detail request that the protocol client sends to the protocol server. It 
is based on query result information previously sent to the protocol client in a query response. The 
format of the message is specified in the following table. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length 

Message code 

Channel Identifier 

Enabled Features 

Datestamp 

GenerationTable (optional) 



 

48 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Ranking (optional) 

Query flags (optional) 

Wanted Summary Class (optional) 

Query stack (optional) 

Current Date and Time (optional) 

… 

Docids (optional) 

Message length (4 bytes): This is of type uint32_b and specifies the length of the message in 

bytes, excluding the length of this field. The length MUST be less than 20,000,008 bytes. 

Message code (4 bytes): This is of type uint32_b and contains the value 219. 

Channel identifier (4 bytes): This is of type uint32_b and specifies the identifier that associates 
the request and the response (section 3.2.1). 

Enabled Features (4 bytes): This field is of type uint32_b, and it specifies enabled features by 
setting bits according to the following table. All other bits are set to 0. 

The corresponding field data MUST be present in the message for each enabled feature. The fields 
that correspond to each feature are specified after the next table. If the protocol client requests 
result details for any items, a series of Docids sections MUST follow at the end of the payload.  

Value Feature name Meaning 

0x00000001 Item Identifier 
Datestamp 

Each item identifier in the docids field MUST be followed by a 
date stamp. MUST be enabled.  This is the only place in the 
message that content is changed for this bit flag, rather than 
appending a content section. 

0x00000004 Query stack Specifies that the message includes the query stack from the 
original query request. This enables the protocol server to 
highlight item summaries in the query results. This field SHOULD 
be set. 

0x00000008 WantedResClass Specifies that the protocol client is requesting a specific result 
view from the protocol server. 

0x00000010 Ranking MUST be set if rank log is enabled.  

0x00000040 Current date and time Current date and time on the protocol client.  

0x00000080 GenerationPresent MUST be set. Specifies the revision of the search index on which 
to perform queries. 

Datestamp (4 bytes): This field is of type uint32_b and specifies the age of the protocol server 
that the protocol client is sending the requests to. It is specified in seconds that have elapsed since 
1970-01-01 UTC.  

%5bMS-OFCGLOS%5d.pdf


 

49 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

GenerationTable (variable): This optional field MUST be present in the request if the 
GenerationPresent bit flag of the enabled features field of the request is set. It contains three 

uint32_b values. The first uint32_b field represents the length of the data chunk in bytes. If the 
protocol client does not request a specific revision of a search index, this uint32_b field MUST be 

equal to zero. To request a specific index generation or revision of a search index, a protocol client 
copies the leaf and generation identifier fields from the preceding query response to this field. If the 
initial uint32_b field is greater than 0, then the GenerationTable field MUST be according to the 
specification in the following table.  

Field 

Type / 

Length Value Meaning 

Length uint32_b This value MUST be set to 8. Number of bytes the generation table 
consists of, not counting this field. 

Leaf uint32_b This value MUST be set to 1 if 
the length of the field is 
greater than 0. 

Specifies that the protocol server that 
responded is a leaf node. 

Generation 
identifier 

uint32_b Greater than or equal to 0. Numeric value representing the 
generation of indexes used when 
evaluating the search query. 

Ranking (4 bytes): If the Ranking flag is set in the enabled features field, this optional 
uint32_b field specifies the rank profile to use. 

QueryFlags (4 bytes): This optional field is of type uint32_b. If the Ranking flag is set in the 
enabled features field, this specifies query flags that are contained in the request. This is the 
information that is copied from the original request if it is present. It is used to re-evaluate the 
query to generate extra debug information if the include ranking information bit flag is set in the 
copied queryflags. 

Wanted Summary Class (4 bytes): This optional field is of type uint32_b, and it specifies the 
summary class to use in the response. It MUST be present if the WantedResClass bit flag in the 

enabled features field is set. A request for a specific class returns the managed properties that are 
contained in that class. The mapping between this field and the summary class is specified in the file 
named "summary.cf", as specified in [MS-FSSCFG] section 2.18. 

Query Stack (variable): This optional field is a variable-length byte array that contains the 
serialized query stack, if the query stack flag is set in the enabled features field. The query stack 

consists of a uint32_b field that specifies the approximately number of operators that were 
serialized onto the query stack, followed by a uint32_b field that specifies the length of the 
serialized query stack, followed by the serialized query stack as specified in section 2.2.6.  The 
length field is only the length of the query stack; it does not include the two uint32_b fields. The 
structure of the query stack field is specified in the following table.  

Field Type / Length Value Meaning 

Number of stack 
entries 

uint32_b Unsigned 
integer 

Specifies approximately how many operators 
exist on the stack. Not exact. 

Length uint32_b Unsigned 
integer 

Length of query stack data chunk. 

Serialized query 
stack.  

Variable-length 
byte array 

Data array  Included for re-evaluation of the query by the 
protocol server. 

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSSCFG%5d.pdf


 

50 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Current Date and Time (8 bytes): This optional field is of type datetime64_b, and specifies the 
current date and time on the protocol client for freshness boost calculations. Reevaluation of rank 

only occurs if the rank log bit flag is enabled. It MUST be present if the Current date and time 
flag is set. 

Docids (variable): This optional field is of variable length and contains document identifiers 
associated with items for which the protocol client is requesting result details. The 3 fields it 
contains are specified as follows: 

Docid (4 bytes): This field is of type uint32_b and it contains the document identifier. The docid 
MUST be specified without the highest bit set. The highest bit is used to specify if collapsing has 
been done in query responses, see section 2.2.7. 

part_id (4 bytes): This field is of type uint32_b and it contains the internal partition identifier. It 

MUST be the same as the part_id field that is contained in the query hit for this document, as 
specified in the hit list field in section 2.2.7.  

docstamp (4 bytes): MUST be the same as the docstamp field that is contained in the hit list, from 

the query response, for this document. This field MUST be set.  

This section MUST always be the last part of the Result Details request message. By counting the 
number of bytes that have been read, the protocol server can read the rest of the message payload 

and treat it as a list of item identifiers that are requested by the protocol client. 

2.2.9   Result Details Response 

This message contains the response to a result details request, including the managed properties of 
an item and highlighted managed properties. Each message contains result details for one query hit 
from the docids field in the corresponding result details request. The message syntax is specified in 
the following table.  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length 

Message code 

Channel Identifier 

Docid 

Summaryclass 

Item Content 

Message length (4 bytes): This is of type uint32_b and specifies the length of the message in 
bytes, excluding the length of this field. The length MUST be less than 500,000,008 bytes. 

Message Code (4 bytes): This is of type uint32_b and contains the value 205. 

Channel Identifier (4 bytes): This is of type uint32_b and specifies the identifier that associates 
the request and the response flow (section 3.2.1). 



 

51 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Docid (4 bytes): This field is of type uint32_b and it contains the item identifier of the item being 
returned. It is the same as the item identifier contained in the result details request. 

Summaryclass (4 bytes): This field specifies the summary class used for this result details 
response. A summary class represents a view of the search index that can be returned in a result 

details response. A protocol server SHOULD support multiple summary classes. The summary.cf and 
summary.map files are used to store the configuration on the content of each summary class. These 
are available through the [MS-FSCX] protocol. See [MS-FSSCFG] section 2.18 and [MS-FSSCFG] 
section 2.19 for more information about these files. 

If a summary class was not specified in the corresponding result details request, the protocol server 
uses the default summary class specified in summary.cf. 

Item Content (variable): This field contains the item summaries for each query hit in the query 

hit list. It contains summaryfields fields that are specified as follows. 

summaryfield[N] (variable): Data for each managed property for the current item, as specified in 
the summary.cf file for the summary class in use. The number of managed properties returned is 

specified in the summary.cf file. The following table specifies how the different managed property 
field types are serialized.  

Field 

Type / 

Length Value Meaning 

length uint16_l or 
uint32_l 

Unsigned 
integer of the 
same size as 
the type 

Specifies the length of the string field. The field is of type 
uint16_l for item summary fields of type string and data, and 
the field is of type uint32_l for item summary fields of type 
longstring. For ‘longstring’, the length MUST be masked with 
the bitmask 0x80000000 to find the length. 

string Variable 
length byte 
array 

Data Content of the item property 

For an item summary of type string, the string field contains UTF-8 encoded characters. For an item 

summary of type longstring, the content can be compressed or uncompressed. The most 
significant bit specifies whether the field is compressed. A uncompressed field of type longstring 
contains UTF-8 encoded characters. The format of a compressed field is specified in the following 
table. 

Field 

Type / 

Length Meaning 

length uint32_l Length of the uncompressed data 

data Byte array A byte array of the length of the previous field, containing compressed UTF-8 
encoded text strings. The compression MUST use the zlib format, as specified in 
[RFC1950], and be compressed using the "deflate" compression method.  

2.2.10   Queue Length Message 

The Queue Length message content MUST be ignored. The message structure is specified in the 

following.  

%5bMS-FSCX%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90301


 

52 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length 

Message code 

Reserved 

… 

Message length (4 bytes): This is of type uint32_b and specifies the length of the message 
excluding this field. It MUST be set to 12. 

Message code (4 bytes): This is of type uint32_b and MUST contain the value 216. 

Reserved (8 bytes): This MUST be ignored. 

2.2.11   Statistics Query Request 

This message requests a statistics query response from the protocol server. The message structure 
is specified in the following table. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length 

Message code 

Channel Identifier 

Output command 

Message length (4 bytes): This is of type uint32_b and specifies the length of the message 
excluding this field. It MUST be set to 12. 

Message code (4 bytes): This is of type uint32_b and contains the value 222. 

Channel identifier (4 bytes): This is of type uint32_b and specifies the identifier that associates 

the request and the response (section 3.2.1). 

Output command (4 bytes): This is of type uint32_b and it specifies how the protocol server 
formats the statistics XML (see [XML10] for more on XML). The values are specified in the following 
table. 

Value Meaning 

1 Specifies that the protocol server formats the statistics XML as an XML fragment.  

2 Specifies that the protocol server wraps the statistics XML fragment so that the output is a 

complete XML document.  

http://go.microsoft.com/fwlink/?LinkId=90600


 

53 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

The protocol server adds the following header to wrap the output, when the output command is 
equal ‘2’: 

<?xml version="1.0"?> 

<!DOCTYPE search-stats SYSTEM "search-stats-1.0.dtd"> 

<search-stats> 

The protocol server then adds the following footer to close the search-stats XML clause. 

</search-stats> 

2.2.12   Statistics Query Response 

This message returns query and cache statistics for the protocol server. The message structure is 

specified in the following table. 

 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

1 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

2 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

3 

0 

 

1 

Message length 

Message code 

Channel Identifier 

Statistics payload length 

Statistics payload 

Message length (4 bytes): This is of type uint32_b and specifies the length of the message 
excluding this field. It MUST be greater than 0 and less than 70,000,008. 

Message code (4 bytes): This is of type uint32_b and contains the value 223. 

Channel identifier (4 bytes): This is of type uint32_b and specifies the identifier that associates 
the request and the response (section 3.2.1). 

Statistics payload length (4 bytes): This is of type uint32_b, and it specifies the length of the 
statistics payload. 

Statistics payload (variable): This is of type string and it contains a UTF-8 encoded XML 
fragment. This field response contains statistical information about the protocol server. The format 

is specified in [MS-FSSADM] section 7. 

%5bMS-FSSADM%5d.pdf


 

54 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

3   Protocol Details 

3.1   Common Details 

This section contains details that apply to both the protocol server and the protocol client.  

The protocol architecture enables an M:N relation between protocol clients and protocol servers. The 
protocol does not impose any limitations on M or N. Communication in this protocol is specified as 
occurring between one protocol client and one protocol server. 

Multiple instances of protocol clients and protocol servers serve several purposes: 

Support partitioning of the entire searchable index over several protocol servers 

Enable configurations with multiple instances of protocol servers to achieve increased 

performance and fault-tolerance  

Enable configurations with multiple instances of the protocol client for increased performance and 

fault-tolerance 

3.1.1   Common Abstract Data Model 

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does not mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 
document. 

The protocol performs queries against a searchable content index and returns results that match the 
query parameters. This MAY be an index in the format documented in [MS-FSIXDS]. 

The protocol client sends a request to the protocol server, and the protocol server responds with the 
matching result. An example of a full search and retrieve sequence that contains 5 types of 
messages is specified in the following figure. Messages are associated with responses as specified in 

the following table. 

%5bMS-FSIXDS%5d.pdf


 

55 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

 

Figure 5: Full search and retrieve sequence 

The messages, their origins, and associated responses are specified in the following table. 

Messages originating from the protocol client Responses originating from the protocol server 

PING Request (section 2.2.3) PING Request Answer (section 2.2.4) 

Query Request (section 2.2.6) Query Response (section 2.2.7) 

 Queue Length message (section 2.2.10) 

Result Details Request (section 2.2.8) Result Details Response (section 2.2.9) 

 Multi-part Message End (section 2.2.2) 

Statistics Query Request (section 2.2.11) Statistics Query Response (section 2.2.12) 



 

56 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Messages originating from the protocol client Responses originating from the protocol server 

Any message Error (section 2.2.5)  

How the protocol client and protocol server process these messages is specified in sections 3.2 and 
3.3. 

3.1.2   Timers 

None. 

3.1.3   Initialization 

A TCP/IP connection from the protocol client to the protocol server MUST exist before the protocol 
can be used. The default protocol server port is 13052. 

The protocol client and protocol server SHOULD use only one TCP/IP connection per protocol 

client/protocol server pair. Multiplexing of multiple queries on this connection is performed by using 
the message channel identifier field as specified in section 3.2.1.  

The protocol client and protocol server use configuration files associated with the search index to 
encode and decode the protocol. These files are available from the Configuration Server, using the 
protocol specified in [MS-FSCX]. The paths to the files are specified in [MS-FSSCFG]. If the protocol 
server or the protocol client cannot read the files specified in the following table, they MUST have 

access to the same configuration information through some other method. 

File Name Description 

summary.cf Specifies the available summary classes in the system and what managed properties 
constitute those summary classes. For more information, see [MS-FSSCFG] section 2.18. 

Index.cf Specifies the structure of the search index. The protocol client requires this to determine 
whether named managed properties in the request are valid for the search index on the 
protocol server. For more information, see [MS-FSSCFG] section 2.1.2.  

3.1.4   Higher-Layer Triggered Events 

None. 

3.1.5   Message Processing Events and Sequencing Rules 

The request sequences are documented in general in the following sections. For more information 
about messages sequences and handling, see sections 3.2.5 (protocol client) and 3.3.5 (protocol 
server). 

3.1.5.1   PING 

The protocol client uses PING messages to monitor the status of connections to at least one protocol 

server. The protocol client MUST send PING requests to monitor the protocol server (section 2.2.3) 
each second and the protocol server MUST send a PING response immediately (section 2.2.4).  

3.1.5.2   Query 

A query consists of two messages, a request (section 2.2.6) from the protocol client, and a response 

from the protocol server (section 2.2.7). The protocol client uses the response to request more 

%5bMS-FSCX%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf


 

57 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

information about the items in the result set from the response. If the protocol client only wants to 
check if there are items that match the query terms instead of retrieving the specific item details, it 

can skip the result details stage. 

3.1.5.3   Result Details 

The protocol client requests information about query hits that were listed in the previous query 
response. The protocol server sends one response (section 2.2.9) for each query hit. After returning 
all requested responses, the protocol server sends a Multi-Part Message end response (section 
2.2.2) to the protocol client to specify that the response is complete. The protocol client combines 
information from the initial and subsequent responses to create the full end search result. 

3.1.5.4   Errors 

If an error occurs on the protocol server during message processing, the protocol server SHOULD 
send an error message (section 2.2.5) if the protocol client enabled error reporting. If an error 
occurs because of lack of resources, the protocol server can close the connection immediately 
without sending an error message, even if the protocol client enabled error reporting. For more 

information about enabling error messages, see section 2.2.6. 

3.1.6   Timer Events 

None. 

3.1.7   Other Local Events 

None. 

3.2   Client Details 

3.2.1   Abstract Data Model 

This section describes a conceptual model of possible data organization that an implementation 

maintains to participate in this protocol. The described organization is provided to facilitate the 
explanation of how the protocol behaves. This document does not mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 

document. 

The protocol client sends a request to the protocol server. The protocol client compares the channel 
identifiers in the request and the response to determine whether they can be paired. A request and 
the associated response contain the same channel identifier. If a request leads to multiple 
responses, all of the responses MUST contain the same channel identifier. A protocol client MUST 
NOT reuse a channel identifier if outstanding responses exist for a request/response pair, and any 
associated time limits have not expired.  An example of the flow of a channel identifier is shown in 

the following figure. 



 

58 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

 

Figure 6: Channel identifier flow 

Global states in the protocol client: 

SentChannelIds: A list of the channel identifiers currently in use by the protocol client.  

ServersAvailable: A list of available protocol servers. 

ServersDown: A list of protocol servers which are not available. 

LastStartOfServers: A list of the start time of each of the protocol server components. 

A full query/result sequence consists of multiple messages. The protocol client needs to store some 
information during the query sequence, and the following is state held per query by the protocol 
client: 

ChannelId: The current channel identifier used for this query. 

QueryFlags: The query flags used in the original query.  

ParsedQuery: The parsed query stack sent in the original query.  

Index generation: The generational information returned from the protocol server in the query 
response. 



 

59 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

HitList: The list of items from the query response hit list. Each entry contains the docid, part_id 
and docstamp fields, which are required when the protocol client requests further information 

about a query hit.  

RankHitList: The rank of each entry in the query hit list (from the query response message). 

SortData: The sort data returned for the query hits (From the query response message).  

AggregationResults: The results of any aggregation specifications in the query request.  

CollapseList: A data structure that specifies whether a query hit was collapsed, and if so, which 
other items in the result set are collapsed with it.  

TotalCollapsed: The total number of collapsed entries. 

TotalNotCollapsed: The total number of non-collapsed entries. 

SentARefineRequest: A Boolean field that specifies whether the protocol server will send a refine 

response to match the refine request.  

The protocol tries to avoid duplication of data sent from the protocol server to the protocol client. 
Because of this, the protocol client needs to assemble a number of these temporary query state 
variables to form a complete response. The protocol does not impose any restrictions on how the 
protocol client exposes results to an end-user or a higher-level application, but it SHOULD at least 
contain the following information: 

AggregationResults 

HitList (combined with RankHitList to expose the rank). 

Item content (the managed properties for each query hit). 

3.2.1.1   Handling Multiple Protocol Servers 

The protocol architecture enables communication between a protocol client and multiple protocol 

servers. Typically, architectures that support multiple instances of protocol servers increase 

performance and increase fault-tolerance. The following two scaling configurations are supported by 
this protocol: 

Support partitioning of the entire searchable index over protocol servers. In this case each 

protocol server receives queries for a subset of the searchable index. The protocol client merges 
the results from the different protocol servers to form a complete result set for search and query 
applications. 

Enable configurations of redundant protocol servers for increased performance and fault-

tolerance by duplicating parts of the searchable index. An application can implement load sharing 
mechanisms to enable separate protocol server components to support different queries. This 
protocol does not impose restrictions on the type of load sharing mechanism. The application can 
implement appropriate methods for handling situations where protocol servers cannot process 
queries, as long as one redundant protocol server is available. 

The two scaling methods MUST be possible to combine. If an implementation supports the first 
scaling configuration, the protocol client MUST: 

Send all subsequent result detail requests to the protocol server that sent the preceding query 

response.  



 

60 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Sort query result entries based on sort data returned in the query response message, depending 

on the sorting mechanism requested. The protocol client MUST be able to merge sorting data 

from several protocol servers. Implementations can use different methods to calculate the sorting 

results, but the data returned MUST follow the specification for the result sorting data field in the 
query response message (see section 2.2.7). Merging MUST also be possible based on rank. 

Merge aggregation data from multiple protocol server components into one histogram.  

Merge collapsed result sets from multiple protocol servers so that the number of documents per 

value collapsed is the same as before the merge.   

The channel identifier is not globally unique across several protocol client/servers.  The protocol 

client MUST use the channel identifier and the protocol server address to associate a response 
with the message that requested it.  

3.2.1.2   Error Handling 

If the error messages enabled flag in the query flags field in the request is set (section 2.2.6), 

then any request except the PING request can cause the protocol server to send an error message if 

a request fails. 

The error code in the error message (section 2.2.5) specifies whether this is a permanent error or a 
temporary one.  Temporary errors are typically corrected when the protocol client automatically 
resends the query, while permanent errors specify that some corrective action is required. A 
protocol client MAY use the error code to decide whether or not to automatically handle the error. 
The default protocol client does not do this.   

3.2.1.3   Issuing a Query 

A query follows the pattern shown in section 3.1.1. For more information about what the protocol 
client stores for each part of the request, see section 3.2.5.  

3.2.2   Timers 

The protocol client MUST implement a timer to govern the timeout for a server response. The 
protocol server does not guarantee that an error message is sent if an error occurs (even if it is 

requested), and if a query takes too long, the protocol server SHOULD abort it to prevent excessive 
resource usage. The timeout in the protocol client SHOULD be configurable and the timeout on the 
client SHOULD be the same or lower than the timeout on the protocol server to avoid waiting longer 
than necessary.  

The protocol client MUST also have a timer that triggers sending PING Request messages every 
second to check if the protocol servers are running.  

3.2.3   Initialization 

See section 3.1.3. 

3.2.4   Higher-Layer Triggered Events 

None. 



 

61 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

3.2.5   Message Processing Events and Sequencing Rules 

The protocol client uses the message code field to determine the type of message it received. Each 
message is associated with a unique code; which is specified for each message in section 2.2. The 

messages that the protocol client uses to communicate with the protocol server are specified in 
section 3.1.1. If the protocol client receives a message that contains an unknown or non-valid 
message code, it MUST ignore the message.  

3.2.5.1   Receiving an Error Message 

If the protocol client receives an error message with a specific channel identifier, then it MUST 
ignore any other messages from the protocol server that contain this channel identifier until the 

protocol client reuses it. See section 3.2.1.2 for general handling of error messages. 

3.2.5.2   PING Request and Response 

3.2.5.2.1   Sending a PING Request and Receiving a PING Request Answer 

The protocol client sends a PING request to verify that a protocol server is available. If the protocol 
client connects to several protocol server components, it sends one message to each component. 

The protocol client implements simple monitoring with PING requests, because it only determines 
whether the protocol server responds, rather than analyze the payload of the PING request. The 
protocol client MUST update the ServersAvailable and ServersDown lists based on whether it 
receives a response from the protocol server. The protocol client also stores the timestamp field of 
the PING response for each protocol server in the LastStartOfServers list. The protocol client uses 
this field when sending result details requests.  

More advanced search coverage monitoring is specified in section 3.3.5.1.1.1. This determines 
whether the protocol server is down, even if it responds to the PING request and does not report 
that the complete search content is available. The default protocol server implementation marks a 
protocol server up based on whether or not it responds, but uses the content of the PING response 
to specify the health of the protocol server in more detail in its internal statistics output. 

The PING request and response do not use a channel identifier in the message.  

3.2.5.3   Query Request and Response 

3.2.5.3.1   Sending a Query Request 

Any query request a protocol client sends is formatted as specified in section 2.2.6. The query is 
serialized into the parsed query field of the request. The protocol client can implement any query 
language with this protocol if it can convert from that query language to the parsed query format of 
the protocol. The protocol client MUST set the top level search flag (section 2.2.6) to specify that it 

is an external top level protocol client.  

The protocol client SHOULD comment operators with origin metadata, as specified in section 2.2.6 
to improve hit highlighting and relevancy calculation, if the protocol server uses this. This is 
implementation specific, and the protocol server typically supports only a subset of the origin 

metadata values. If a protocol server does not support a specific value, it MUST ignore it.  

The protocol client temporarily stores the query flags and parsed query from the request in the local 
query state (QueryFlags and ParsedQuery states). These are used when constructing a result 

details request later. 

%5bMS-OFCGLOS%5d.pdf


 

62 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

The protocol client temporarily stores the channel identifier for this request in SentChannelIds, so 
that it can determine whether a response is valid. 

If the protocol client knows that the same query will be resubmitted shortly, but with a different 
offset (for example for splitting large search results up into several pages of items), the protocol 

client SHOULD set the User Cache line and Max offset flags in the enabled features field of the 
query request message to specify this and send the associated query request message fields ( as 
specified in section 2.2.6). This makes it possible for a protocol server implementation to optimize 
caching of the results for reoccurring queries. 

3.2.5.3.2   Receiving a Query Response 

The protocol server sends a response to a query request as specified in section 2.2.7. The protocol 

client verifies that the channel identifier in the response is in the SentChannelIds list and the same 
as the original request.  Then the protocol client stores the query hits, any associated ranks, the 
results of any aggregation, the GenerationTable field from the response, any field collapsing data, 
and the sort information in the temporary query state (as specified in the abstract data model, see 
section 3.2.1). If the protocol server supports search index revisions, then the protocol client uses 

the GenerationTable field from the response and the hit list field to specify the same revision of 

the items when assembling subsequent requests. If the result set is empty, and there were no query 
hits, then the protocol client does not send any more messages to this protocol server for this query 
sequence. 

If the protocol server returned a hit list in the response, then the protocol client sends requests for 
result details for each item and its associated managed properties.  

If no items are returned because the max hits field in the query request message was set to 0 
(even though matching items are present on the protocol server), the protocol client SHOULD return 

the aggregation results from the query response message to the higher level application (or end 
user). This is an optimization for when the higher level application or end-user just wants to retrieve 
aggregation information.  

The protocol server uses rank or sort information to merge results if the protocol client queries 
several protocol servers, as specified in section 3.2.1.1. By performing the merge before the result 

details request stage, the protocol client avoids sending any unnecessary result details requests for 
items later dropped during sorting. 

If the protocol server sets the maxerror field in the returned aggregation data, as specified in the 
aggregationdata field in section 2.2.7, this specifies that a cut-off occurred, and the occurrence 
count for aggregation buckets in the results could be inaccurate. The protocol client SHOULD send a 
refine query request (see next section) to recalculate the occurrence counts for the aggregation 
buckets which were impacted by the cut-off. The protocol client MUST then replace the original 
returned aggregation occurrence counts in the temporary query state with the results of the refine 

query request for the specific aggregation buckets which were affected by the cut-off. 

If field collapsing was enabled and did take effect, the protocol client SHOULD save the content of 
the Field Collapsing with Collapsed Results Removed field into the CollapseList local query state, so 
that it can be returned to a higher level application or end-user. This higher level application or end-
user can then use this information to tag or reformat the query results to specify that field 

collapsing has occurred (a normal frontend behavior is to add a button to show more results for the 
value collapsed on, which could lead to the query being rerun without collapsing). 

3.2.5.3.3   Sending a Refine Query Request 

This is a new query request with the same parameters as the original request, except that the new 
aggregation contains only the aggregations where the results had maxerror field set to 1 and 



 

63 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

therefore a cut-off had been triggered. In addition, a refine specification MUST be added to the 
request to specify the aggregation buckets on which to recalculate the number of occurrences, as 

specified in section 2.2.6. 

This query request MUST use a new channel identifier. The protocol client maintains a 

SentARefineRequest state for each outstanding channel identifier so that it can recognize a refine 
response, because the refine response contains the same message code and structure as a normal 
response. 

3.2.5.3.4   Receiving a Refine Query Response 

This is a normal query response message, except that it does not contain information regarding 
which items matched the query. It also contains no information about field collapsing or sorting. 

Where a cutoff occurred, the protocol client MUST replace the results from the initial query response 
with the aggregation data from this response. Consequently, the AggregationResults query state 
contains the exact same number of aggregation results as the original query response, but the 
occurrence counts for all aggregation buckets are now also correct. 

Because this response is structurally the same as a query response (including the message code), 
the protocol client SHOULD check the SentARefineRequest query state to decide whether a query 

response is a refine response 

3.2.5.4   Result Details Request and Response 

3.2.5.4.1   Sending a Result Details Request 

If the query response contains query hits, then the protocol client assembles a result details 
request, as specified in section 2.2.8.  This is used to retrieve the managed properties that are 

associated with each item in the result set. The protocol client includes the query stack from the 
original request so that the protocol server can highlight the original query terms when returning 
managed properties, because the protocol server has not stored any state information about the 
original query. If the protocol client does not include the query stack, the protocol server SHOULD 
NOT perform hit highlighting on the result items, but instead fall back to returning the complete 

field. The protocol client MUST copy the startup time of the protocol server, as specified in the 
LastStartOfServers state, to the datestamp field of the result details request. 

If the query flags field of the result details request message is present, it MUST be a copy of the 
query flags field from the original query request. If the include ranking information feature is 
enabled in the query flags field, then the protocol server MUST re-evaluate the query to generate 
extra rank calculation debug information. To do this, the protocol server requires enough 
information to evaluate the query in the same manner as the query request, and the protocol client 
MUST provide the ranking and current date and time fields (if freshness boost was calculated) to 
make this possible. If the protocol server does not support generating rank log information, it MUST 

generate a dummy value for this in the response. The format and content of the extra rank debug 
information is implementation specific.  

If the protocol supports revisions of search indexes, then the protocol client copies the revision 
information from the GenerationTable field in the query response to the GenerationTable field in 
the result details request (section 2.2.8). This ensures that the item the protocol server returns is 

the same version the query response found to be a match.  

If the protocol client requests a set of managed properties other than the protocol server default, 
then it MUST specify a summary class in the wanted summary class field of the result details 
request. The available summary classes are specified in the file named "summary.cf" (as specified in 



 

64 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

[MS-FSSCFG] section 2.20), which the protocol client retrieves using the protocol specified in [MS-
FSCX]. 

3.2.5.4.2   Receiving Result Details Responses 

The protocol server sends one or more result details responses, each of which represents one query 
hit. The item content field MUST be decoded as specified in the summary class in the result details 
request. The summary.cf and summary.map files store the configuration on the content of each 
summary class. These are available through the [MS-FSCX] protocol. For more information about 
these files, see [MS-FSSCFG] sections 2.18 and 2.19.  

To further decode datetime and numeric managed properties, the protocol client uses the 
information stored in the file named "maptransform.xml", specified in [MS-FSSCFG] section 2.3. 

This file is downloaded from the configuration protocol server using the protocol specified in [MS-
FSCX].  

Details about how the hit highlighting is encoded can be found in the "fsearch.addon" file (see [MS-
FSSCFG] section 2.9), which is also available using the configuration protocol specified in [MS-

FSCX].   

3.2.5.4.3   Receiving a Multi-part Message End Message 

This message specifies that the protocol server sent all responses for the items specified in the 
associated results details request. If a protocol client did not receive all of the responses, it can send 
a new request for that specific item. If so, it MUST use a new channel identifier in the new request, 
because this is a separate request.  This separate request is terminated by a new multi-part end 
message.  How the protocol client behaves when it is repeatedly unable to retrieve managed 
properties for all items is implementation specific. 

3.2.5.5   Receiving a Queue Length Message 

This message does not use a channel identifier and therefore does not share the same channel 
identifier as the query request message it responds to. The content of the message MUST be 

ignored by the client. 

3.2.5.6   Statistics Query Request and Response 

3.2.5.6.1   Sending a Statistics Query Request 

This requests statistics about the state of the protocol server. These statistics include information 
about cache usage and query latency. If the protocol client wants to merge results from several 
protocol servers, the protocol server sets the output command field to 1 (section 2.2.11), to make 
the protocol server send the response as an XML fragment. The protocol client SHOULD then merge 
multiple fragments into one message as specified in [MS-FSSADM] section 7.  

3.2.5.6.2   Receiving a Statistics Query Response 

If the protocol client has requested information about multiple protocol servers, then the answers 

from all servers SHOULD be merged into one result. See section 3.2.5.3.1. 

3.2.6   Timer Events 

The time limit expires if the protocol client waits longer than the timeout for a response from the 

protocol server specified by the channel identifier. When a timeout occurs, the protocol client 

%5bMS-FSSCFG%5d.pdf
%5bMS-FSCX%5d.pdf
%5bMS-FSCX%5d.pdf
%5bMS-FSCX%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSADM%5d.pdf


 

65 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

removes the channel identifier from the list of outstanding channel identifiers that are contained in 
the SentChannelIds state. 

A protocol client MUST implement a PING request timer, and send a PING request each second when 
it triggers. A timer MUST be used for each PING request so the protocol client can determine 

whether the protocol server responds, and update the ServerAvailable or ServersDown states 
accordingly. 

3.2.7   Other Local Events 

None. 

3.3   Server Details 

3.3.1   Abstract Data Model 

This section describes a conceptual model of possible data organization that an implementation 
maintains to participate in this protocol. The described organization is provided to facilitate the 

explanation of how the protocol behaves. This document does not mandate that implementations 
adhere to this model as long as their external behavior is consistent with that described in this 
document. 

The protocol server does not store any state when processing queries, but it MUST respond to a 
message with the correct message type and the channel identifier that was contained in the query 
(section 3.2.1). 

Protocol servers impose limitations on results that the protocol client cannot override. For example, 
the protocol client can request 10,000 query hits, but the protocol server returns only 4000. The 
protocol server has a default maximum limit of 100000. This limit is configurable. 

Index column identifier: A number greater than or equal to 0 that specifies which column the 
protocol server represents. Configured at install time. 

If the protocol server implements the PING response fully, then the protocol server SHOULD also 

maintain the following states:  

Process Count: The total number of search processes on this protocol server.  

Active Processes: The active number of search processes on this protocol server 

Total Partition Count: The total number of partitions. 

Active Partitions: The number of available active partitions.  

The number of search processes and partitions is used only by the PING response to specify the 
health of the implementation. For an implementation that does not expose health details, these 
states are not used. 

3.3.1.1   Handling Multiple Protocol Clients and Multiple Queries per Client 

The protocol server processes information from multiple protocol clients. Each protocol client 

maintains a TCP/IP connection to the protocol server, and the protocol server processes multiple 
messages over the same connection.  

The protocol server responds to a request message by using the channel identifier of the request in 
the corresponding response message (section 3.2.1). If the protocol server sends an error message 



 

66 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

instead, the error message MUST still contain the channel identifier of the query request. The 
channel identifier does not specify the sequence of operations, nor is it unique to a specific protocol 

client. 

3.3.1.2   Handling PING Requests 

The protocol server MUST always respond immediately to a PING request. A PING message does not 
contain a channel identifier, but a protocol server MUST respond to the PING request on the same 
TCP/IP connection on which it was received.  

3.3.1.3   Search Index 

This protocol does not impose limitations on the data structures in which the protocol server stores 

the content for which the protocol client searches against. The minimal requirements are that it 
MUST have an index of items that consists of a list of managed properties. The data structure MUST 
enable searching in specific managed properties and in full-text indexes. In addition, the search 
index MUST support aggregation on a result set based on the managed properties that are 
associated with an item, as specified in the aggregation request section 2.2.6.  

The full-text indexes and managed properties that are available are specified in the file named 

"index.cf", see [MS-FSSCFG] section 2.1.2. The managed properties that support aggregations are 
specified in the file named "indexConfig.xml", see [MS-FSSCFG] section 2.10.  

The protocol server MUST handle the state where some of the managed properties do not have a 
value for every item, and that some of the managed properties have multiple values.  

3.3.1.4   Evaluating Queries 

The protocol server goes through several states when evaluating a search query, as shown in the 

following figure. 

%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf


 

67 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

 

Figure 7: Search query states 

The protocol server then returns this list of items and the aggregation results to the protocol client. 
This is just the list of items, rather than the managed properties associated with an item. The 
managed properties are returned as a separate stage specified in the following section.  

3.3.1.5   Returning Query Hit Details 

The protocol server goes through several states when sending a requested item, as shown in the 
following figure. 



 

68 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

 

Figure 8: Returning a requested item 

When the protocol client requests details for a list of items by sending a result details request 
message, the protocol server assembles a result details response message containing the managed 
properties requested. Some of these managed properties are processed before returned to the 

protocol client, such as performing hit highlighting on the words in the query if the protocol server 
supports this.  

3.3.2   Timers 

The protocol server SHOULD implement a configurable timer to stop long running queries that 
exceed the acceptable search time (default is 12 seconds).  

3.3.3   Initialization 

If the search node does not contain any items and does not have a search index available, then the 

protocol server MUST initialize itself so that it responds as if it had a search index containing 0 
items.  

If a protocol server is part of a redundant system and detects it has a too old search index, it 
SHOULD update the search index before it opens the TCP/IP port for serving requests if not 
explicitly configured to ignore this. This avoids dis-synchronization of protocol servers which MUST 

have the same content. With an out of sync protocol server, result details requests could 



 

69 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

permanently fail because of missing documents (or older documents that have been deleted 
appearing in the result set).  

In addition to the files specified in section 3.1.3, the protocol server requires the file named 
"indexConfig.xml" to determine which managed properties permit aggregation. The protocol server 

SHOULD also have access to the file named "rank.cf" to specify available rank profiles, and how to 
combine the rank components when calculating rank.  Both of these files are available from the 
Configuration Server, as specified in [MS-FSCX]. 

For more information about the file named "indexConfig.xml", see [MS-FSSCFG] section 2.10. For 
more information about the file named "rank.cf", see [MS-FSSCFG] section 2.14. 

3.3.4   Higher-Layer Triggered Events 

None. 

3.3.5   Message Processing Events and Sequencing Rules 

The protocol server supports a number of different messages, which are specified in section 2.2. To 
determine which type of message is received, the protocol server uses the message code field, 
which uniquely identifies the type of message. The codes are specified for each message in section 

2.2. If a message arrives with an unknown or non-valid message code, the protocol server behavior 
is undefined. The messages the protocol server can receive from a protocol client is specified in 
section 3.1.1. 

3.3.5.1   Monitoring the Protocol Connection 

3.3.5.1.1   Messages 

3.3.5.1.1.1   Sending a PING Request answer 

A protocol server responds with a PING request answer when it receives a PING request to confirm 
that it still is available. Completion of the fields in the PING response is implementation-dependent, 

as specified in section 2.2.4. The health of the protocol server that uses multiple search processes is 
specified by the ratio between the total number of search processes field and the active 
number of search processes fields.  

If an implementation does not use multiple search processes on one protocol server, then both the 
total number of search processes field and the active number of search processes field are 
set to 1 to stop the monitoring process. In this case it will always appear to be running properly as 
long as it responds to the PING requests, because the total number of search processes field 
contains the same value as the active number of search processes field. This is currently used 
only in statistics/logs. 

Similarly, the protocol server components expose the availability of the complete search index by 

setting the total partitions and the active partitions fields. The protocol server sets both of these 
values to 1 to specify that it does not use partitioning and therefore manages the complete search 
index. The response associated with these settings specifies full availability, even though the 

protocol servers use index partitioning.  

A protocol server MAY stop responding to a PING message to inform a protocol client that it is not 
available for queries. The current protocol server implementation continues answering, even though 
the complete index set is not up and running.  

%5bMS-FSCX%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf


 

70 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

3.3.5.1.1.2   Receiving a PING Request 

If the protocol server received a PING request, as specified in the message code field (section 
2.2.3), the protocol server MUST respond with a PING response message (section 2.2.4). It does not 

do anything with the content of the PING request message. 

3.3.5.2   Processing Queries 

The protocol server receives a query request that contains parameters that specify query 
processing. It processes the request, then sends a query response that contains a list of items that 
match the query. 

3.3.5.2.1   Messages 

3.3.5.2.1.1   Sending a Query Response 

If the protocol server processes the query successfully against the complete search index, then it 

sends the results to the protocol client in a query response, as specified in section 2.2.7. If the 
protocol server did not manage to search the complete search index, then the result is only sent if 
the allow partial results flag is set in the query flags field of the request. Otherwise, it sends an 

error message to specify the reason for the failure if the enable error message bit flag is set in 
the query flags field of the request. If the enable error message bit flag was not set, then it 
MUST fail silently.  

As long as the query request from the protocol client was not a query to do aggregation refinement  
(see section 3.2.5.3.3) the protocol server MUST return up to the number of items specified in the 
max hits field of the query request, beginning at the offset specified in the query response's offset 

field. If field collapsing was enabled during query evaluation, a protocol server can end up returning 
less than the maximum number of items, even though the original query resulted in more items 

Aggregation results MUST be encoded as specified for the aggregationdata field in section 2.2.7, 
and they MUST be serialized in the same order as the aggregation requests occurred in the request 
aggregation specification field.  

After calculating the list of items to return, a protocol server SHOULD follow the caching instructions 
in the user cache lines field and max offset field of the query request if it has a cache, and these 

features are enabled. These fields specify to the protocol server that a similar search will probably 
be done shortly.  

If the report search coverage flag is set in the query flags field of the request, the protocol 
server MUST include search coverage information in the query response, as specified in section 
2.2.7. 

3.3.5.2.1.2   Receiving a Query Request 

The enabled features and query flags fields in the message specify which features to enable in 
the query and how to process it.  

If an error occurs during message validation or query processing, and the enable error message 

flag of the query flags field is set for this request, the protocol server SHOULD send an error 
message that specifies the failure (section 2.2.5). The protocol server MAY choose not to respond to 
a query request message instead of sending an error message in some cases, such as if the error 
happens because of fundamental lack of resources in the search processes. 



 

71 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

The query is included as a serialized query stack as the final field of the message payload. The 
protocol server evaluates the query following the specification for each operator in section 2.2.6. 

There is no limitation on the number of operators in a query, but the maximum length of the 
request is 60,000,008 bytes.  

For some of the query operators it is possible to specify a specific part of the index against which 
the operator MUST be evaluated. If no index is specified for the query operators, they MUST all fall 
back to querying the default index specified in index.cf (see [MS-FSSCFG] section 2.12.3).  

The result of the query request is a list of items that match the criteria in the query stack.  

The protocol supports revisions of search indexes. If a protocol server supports revisions of search 
indexes, it SHOULD return a data structure in the generationtable field of the query response 
message (section 2.2.7) which specifies the revision used for the current query. 

This value SHOULD then be used by the protocol client to request details from the same index 
generation (see section 3.3.5.4). This permits returning older versions of items, even if they have 
changed in the search index. If a protocol server does not support this feature, then it can ignore 

the index generation value. When the protocol client requests details from a specific revision of the 
search index (section 3.2.5.4), the protocol server sends the older versions of items if available, 
even if a newer search index version exists. If the protocol implementation does not support this 

feature, then it SHOULD ignore the generation specification field.  

After evaluating the query, the results MUST be sorted according to the sort specifications in the 
query request. If no sort specification is present, then the default sorting MUST be by rank in 
descending order. If a sort specification is in place, but no explicit order is given, the protocol server 
MUST always default to sorting in a descending order. If a sorting specification is given, it MUST be 
evaluated according to the sort specification section in section 2.2.6, and the protocol server MUST 
implement support for all sort primitives specified in that section. 

The protocol does not impose any restrictions on how to calculate rank, but the protocol server 
SHOULD implement support for different rank profiles so the protocol client can easily change 
between different ways of calculating rank. 

If a rank profile is specified, and there is no sorting specification present, then the results MUST be 
sorted according to this rank profile if the protocol server supports rank profiles. The first integer 
from the rank profile specification field SHOULD be used to lookup the rank profile specification 
in the rank.cf file (see [MS-FSSCFG] section 2.11) if the protocol server wants to calculate a 

compatible rank.  

If both a rank profile and a sort specification are supplied, then the rank profile MUST only be used 
for sorting if "[rank]" is specified in the sort specification.  

A special case of ranking is random ranking. The protocol supports two types of random ranking, 
simple and full. Simple random search is performed by using only the random seed field from the 
request, while full random sorting is specified using the sort specification field. Simple random 

search re-sorts only the highest ranked items up to the maximum number of returned items for a 
query to limit resource usage. If the search index is reorganized, a simple random search might not 
return the same items even if no items have changed. A full random ranking, on the other hand, 
processes the complete result set, and computes the same result for a specified seed value, even if 

the search index was reorganized. However, the full random ranking can change if the number of 
available items changes.  

If a value is specified for the current date and time field, then the protocol server uses it as the 

current time when calculating the freshness boost, as specified in section 2.2.6. 

%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf


 

72 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

If the protocol client requests an aggregation, then the aggregation specifications MUST be 
evaluated over the complete result set of the query according to the specifications in section 2.2.6. 

If aggregation bucket cut-off parameters are specified in the aggregation specifications (for 
performance reasons), then the protocol server MUST limit the number of aggregated buckets 

returned accordingly. If the protocol server actually performs a cut-off then the protocol server 
MUST set the Maxerror flag in the AggrElement information element for this aggregation in the 
query response message to specify this.  How the cutoff is done depends on the implementation, 
and for some implementations this can lead to an incorrect occurrence count in the aggregation 
buckets returned. For an implementation where the bucket count will never be wrong, even when a 
cut-off has occurred, then the maxerror SHOULD NOT be set. 

After the protocol server sends the result, and the protocol client determines that a cut off has 

occurred, then the protocol client SHOULD send an additional query request message with an 
aggregation refine specification for these aggregation buckets to verify that the occurrence count is 
correct as specified in section 2.2.6. The protocol server MUST then recalculate the occurrence 
values ,for these aggregation buckets and return the new values in a query response message. The 
performance impact is limited because only the specified aggregation buckets are counted. Because 
the refine does not have any cut-off specifications, cut-offs MUST NOT take effect (and maxerror 

MUST never be set). The refine query response contains only aggregation data. 

A protocol server implements request evaluation so that the sorting and collapsing processes do not 
occur for refine requests, because the protocol server does not send query hits to the protocol 
client. It only needs to generate the result set of the query. 

After the result set is sorted, an additional field collapse and re-sort can be performed. Field 
collapsing permits folding of results where the items contain the same value for a specified managed 
property. This can be used to avoid too many similar query hits, or to remove duplicates. The 

managed property to collapse on is specified in the Field Collapsing with Collapsed Results 
Removed field, and the number of items to keep per unique managed property is specified in the 
Field collapsing field of the query request. Field collapsing is only performed when both fields are 
specified. When the protocol server performs field collapsing, it reorders the result set so that 
multiple items that contain the managed property value it is collapsing on are grouped together 
sequentially in the result set. The order of the entries in a collapsed group is the sequence specified 
in the rules used to sort the complete result set. If more than the number of items to keep per 

unique managed property exists in the result set, the protocol server removes these from the result 
set. 

An example would be to field collapse on a managed property containing the length of a domain 
name. If the number of items to keep per unique domain length is specified as 3, the protocol server 
would keep up to 3 items per unique domain length. The up to 3 items would appear sequentially in 
the result list beginning at the place the highest ranked (or sorted) item appears.  

If the report queue length bit flag is set in the query flags field of the request, the protocol 
server sends a queue length message (section 2.2.10) before sending the query response.  

3.3.5.3   Returning Results 

3.3.5.3.1   Messages 

3.3.5.3.1.1   Sending a Result Details Response 

All result details responses use the same channel identifier that was used for the initial request, as 
specified in section 3.2.1. The protocol server SHOULD send an error message if an error occurs 
during request processing and the enable error message flag in the query flags field in the 
message is set. The protocol server MUST NOT send any result details responses or multi-part 



 

73 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

message end messages with the same channel identifier after an error message has been sent (until 
the protocol client reuses the value in a new message sequence). 

If the WantedResClass bit flag is set in the enabled features field of the request, then the 
protocol server MUST use the Wanted Summary class field to determine which managed 

properties to return. This is done by looking up which managed properties a summary class consists 
of in the "summary.cf" file, as specified in [MS-FSSCFG] section 2.18. If the WantedResClass bit 
flag is not set then the protocol server MUST use the default summary class specified in the file.  
The protocol server does not return managed properties other than the ones configured in the 
summary class.  

The protocol server SHOULD use the query stack to generate an appropriate hit highlighting of 
search terms if this is supported by the protocol server and the managed properties are configured 

to use the hit highlighting feature. This configuration is stored in the "summary.map" file. 
Configuration on how to do hit highlighting is in the "fsearch.addon" file.  The protocol server 
implementation MAY use origin values to comment operators in such a way that hit highlighting can 
treat them differently if configured to do so. If the query stack is not supplied in the request 
message, then the protocol server SHOULD fall back to returning the managed property without hit 

highlighting, because it is not possible to highlight without knowing the original query terms. If the 

include ranking information flag is set in the query flags field, then the protocol server SHOULD 
re-evaluate the query to generate debug ranking information. The debug information SHOULD be 
returned in the ranklog predefined summary field if the summary class includes it. Interpretation of 
this rank log is implementation specific. The query is re-evaluated because the protocol server does 
not save information from the original request. Re-evaluating the query does not change the items 
that the protocol server sends to the protocol client in the docids field of the response. The protocol 
server also uses other fields in the result details request, such as the rank profile and current 

date and time fields, to re-evaluate the query (if needed).  

For more information about the file named "summary.map", see [MS-FSSCFG] section 2.19. For 
more information about the file named "fsearch.addon", see [MS-FSSCFG] section 2.9. For more 
information about origin values, see the operator origin field in section 2.2.6. 

3.3.5.3.1.2   Receiving a Result Details Request 

When the protocol server receives a result details request, it returns one result details response 

message per item requested (section 2.2.9). When all the requested items are returned, the 
protocol server sends a multi-part message end response (section 2.2.2) to confirm completion. If 
the protocol server supports revisions of search indexes, then it uses the GenerationTable field in 
the request when it loads the content of the managed properties from the search index. If the 
requested revision is no longer available, the protocol server sends an error message with the error 
code 16 if the protocol client requested error messages. 

If a protocol server does not support revisions of search indexes, the GenerationPresent bit flag 
and data field in the request can be ignored. 

The protocol server verifies that the datestamp field of the request is equal to the startup time of 
the timestamp field of the PING response. If it is not equal, it returns an error message that 
contains error code 20 (section 2.2.5).  

%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf


 

74 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

3.3.5.4   Returning statistics 

3.3.5.4.1   Messages 

3.3.5.4.1.1   Sending a Statistics Query Response 

When the protocol server replies to a statistics query request, it MUST answer with the same 
channel identifier as in the request. It MUST also follow the output command specifications in the 
statistics query request (see section 2.2.11) to decide how to format the payload. 

3.3.5.4.1.2   Receiving a Statistics Query Request 

When the protocol server receives a statistics query request, it MUST return a statistics query 
response (section 2.2.12). 

3.3.6   Timer Events 

If a timer is implemented to stop long running queries, then an event SHOULD be triggered once it 
goes beyond this limit. The protocol server SHOULD then abort the long-running query to limit the 
amount of resources used. This SHOULD be a configurable limit, defaulting to 12 seconds.  

3.3.7   Other Local Events 

None. 



 

75 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

4   Protocol Examples 

For all examples, the first column describes the data on the wire in hexadecimal notation, while the 
second column describes the hexadecimal values. 

4.1   Full Query/Result 

The example in this section searches for items where the string "w03" is present in a managed 
property named "string1", and the index named "meta.collection" contains the value "navtest".  
Single-level sorting and aggregation are requested, based on managed property string1. 

Aggregation is enabled, as described in section 4.2.1.5 except that cutoff is not requested in this 
example. 

4.1.1   Query Request 

The request follows the specification in section 2.2.6.  

Required fields: 

00 00 
00 F8 

Message data length: 248 byte 

00 00 
00 DA 

Message code 218 – query request. 

00 00 
00 1E 

Channel identifier 

00 00 
29 86 

Features enabled (Sort specification, Rank profile specification, Aggregation 
specification, Generation specification, Field Collapsing and Parsed Query bit flags are 
set) 

00 00 
00 00  

Query type is unknown or it contains multiple operators joined by an AND operator 

00 00 
00 00  

Requested offset. A value of 0 specifies the beginning of the result set. 

00 00 

00 0A 

Maximum number of query hits to return 

00 08 
80 0C 

Query flags (Allow error message, top level search, report queue length, and report 
search coverage fields are set) 

Optional fields as described in the enabled features field 

00 00 
00 08 

Generation table length = 8 

00 00 
01 00 
00 00 
00 00 

Generation table.  

00 00 
00 00 

Rank profile to use. 

00 00 Dataset. Always set to 0. 



 

76 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Required fields: 

00 00  

00 00 
00 01 

Field collapsing. Specifies the number of items to keep per collapsed item. The collapse field 
specification is not present, so collapsing does not occur.  

00 00 
00 0E  

Specifies the length of the Sort Specification field. In this example, the length is 14 bytes 

2D 62 
61 74  

76 6E 
75 6D  

65 72 
69 63  

33 20 

Sort specification field that contains "-batvnumeric3 ". 

00 00 
00 6A  

Specifies the length of the Aggregation specification field. In this example, the specification is 
106 bytes 

28 68 
69 73  

74 20 
3A 62  

75 63 
6B 65  

74 73 
20 3A  

75 6E 
69 71  

75 65 
20 3A  

63 75 
74 6D  

61 78 
62 75  

63 6B 
65 74  

73 20 
31 30  

30 30 
20 62  

61 76 
6E 73  

74 72 
69 6E  

67 31 
29 28  

63 6F 
75 6E  

74 20 
62 61  

76 6E 
73 74  

Contains the string "(hist :buckets :unique :cutmaxbuckets 1000 bavnstring1)(count 
bavnstring1)(hitcount )". 



 

77 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Required fields: 

72 69 
6E 67  

31 29 
28 63  

6F 75 
6E 74  

6E 7A 
20 62  

61 76 
6E 73  

74 72 
69 6E  

67 31 
29 28  

68 69 
74 63  

6F 75 
6E 74  

20 29  

00 00 
00 03  

Specifies that there is a parsed query and it has approximately 3 operators. 

00 00 
00 01  

00 00 
00 02   

AND operator with an arity of 2. 

00 00 
00 04  

00 00 
00 0F  

6D 65 
74 61  

2E 63 
6F 6C  

6C 65 
63 74  

69 6F 
6E 00  

00 00 
07 6E  

61 76 
74 65  

73 74   

String term. Because the integer that occurs immediately after the operator is greater than 
zero, an index specification occurs after the length of that integer. In this case the length is 15. 

The name of the index is "meta.collection" (see [MS-FSFIXML] section 2.5.2.1.3 for more about 
this specific index). Then follows the string term, whose length is 7 and that contains "navtest". 

00 00 
00 04  

00 00 
00 07  

73 74 
72 69  

6E 67 

Second string term. The name of the index is "string1". String to search for in this managed 
property: "w03" 

%5bMS-FSFIXML%5d.pdf


 

78 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Required fields: 

31 00  

00 00 
03 77  

30 33 

4.1.2   Query Response 

The response specifies that only 3 items match the query. 

Required Fields 

00 00 01 00 Size 256 

00 00 00 D9 Message code 217. 

00 00 00 1E Channel identifier 

00 00 00 F1 Enabled Feature bit flags (Dummy, 
SortDataPresent, 
AggregationDataPresent, 
CoveragePresent and GenerationPresent 
bit flags) 

00 00 00 00 Offset is 0 

00 00 00 03 NumHits field contains the value 3 

00 00 00 03 TotalHits field contains the value 3 

00 00 00 00 Maxrank field is set to 0, so ranking was not 
performed 

00 00 00 00 Docstamp 

Optional fields 

00 00 00 08 Generation table length = 8 

00 00 00 01 

00 00 00 02 

Generation Data 

Sort specification 

00 00 00 08 SortIndex[1]=8, offset to the beginning of 
item 2 

00 00 00 10 SortIndex[2]=16, offset to the beginning of 
item 3 

00 00 00 18 SortIndex[3]=24, points to end of sort data 
blob.  

3F EB FF FF FF FF FF FF SortData byte array for item 1 

3F F7 FF FF FF FF FF FF SortData byte array for item 2 

C0 24 00 00 00 00 00 00 SortData byte array for item 3 



 

79 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Required Fields 

Aggregation data 

00 00 00 6C Aggregation data length = 108 

01 00 00 01 20 03 10 08 00 00 00 00 03 00 00 00 28 03 
14 0A 00 00 00 00 09 00 00 00 00 00 00 00 30 03 10 08 
00 00 00 00 03 00 00 00 47 03 04 02 00 00  00 00 00 00 
00 00 04 00 00 00 2C 00 00 00 03 00 00 00 77 30 31 02 
00 00 00 03 00 00 00 77 30 32 03 00 00 00 03 00 00 00 
77 30 33 03 00 00 00 03 00 00 00 77 30 34 01 00 00 00 

Aggregation data blob 

Partial result information 

00 00 00 00 00 00 15 6B Internal 

00 00 00 02 Nodes 

00 00 00 01 Fullresult field set to 1 specifies that the 
response is a complete response. 

Query hit list 

00 00 00 04 00 00 00 00 00 00 00 00 49 14 28 2C Hit 1 

00 00 00 03 00 00 00 00 00 00 00 00 49 14 28 2C Hit 2 

00 00 00 21 00 00 00 00 00 00 00 00 49 14 28 2C Hit 3 

4.1.3   Result Details Request Message 

The protocol client uses the items from the response to retrieve the item summaries. 

Data Description 

00 00 00 88 Message data length: 136 byte 

00 00 00 
DB 

Message code 219 (Result Details) 

00 00 00 24  Channel identifier 

00 00 00 85  Features bit flags (Datestamp, query stack and Generation Specification). 

49 2A B9 0E  Docstamp (number of seconds that elapsed after 1970-01-01 UTC). 

00 00 00 08  Length of Generation table.  

00 00 00 00  

00 00 00 00  

GenerationTable field. 

00 00 00 03 For debug, the query stack is included because the query stack field is set. 

00 00 00 40  Length of query stack (64 bytes) 

00 00 00 01  

00 00 00 02  

00 00 00 04  

Debug Query stack for internal use. This is a copy of the query stack in the original 
request. 



 

80 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Data Description 

00 00 00 0F  

6D 65 74 61  

2E 63 6F 6C  

6C 65 63 74  

69 6F 6E 00  

00 00 07 6E  

61 76 74 65  

73 74 00 00  

00 04 00 00  

00 07 73 74  

72 69 6E 67  

31 00 00 00  

03 77 30 33 

00 00 00 04 

00 00 00 00 

49 14 28 2C 

Request for item 1 

00 00 00 03  

00 00 00 00  

49 14 28 2C 

Request for item 2 

00 00 00 21  

00 00 00 00  

49 14 28 2C 

Request for item 3 

4.1.4   Result Details Response 

The response returns one message for each result item requested. The following tables show the 
detailed message content for this example. When decoding this message, the summary.cf file is 
used to decide which type and which fields are present.  

Message 1 (query hit 1 in the sorted result) 

00 00 01 2C  Message length is 300 

00 00 00 CD Message code is 205 

00 00 00 24  Channel identifier 

00 00 00 04 DocId 

FF FF FF 3F Summaryclass = 1073741823 

Field Content 

28 00 Length of field 

62 39 37 34  

39 31 61 33  

35 63 30 30  

Field content: 
b97491a35c0094022e1624b041c473a1_navtest 



 

81 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Message 1 (query hit 1 in the sorted result) 

39 34 30 32  

32 65 31 36 

32 34 62 30  

34 31 63 34  

37 33 61 31  

5F 6E 61 76  

74 65 73 74    

04 00 Length of field 

69 64 39 34 Field content: "id04" 

07 00 Length of field 

6E 61 76 74 65 73 74 Field content: "navtest" 

00 00 00 00 <empty property of type longstring> 

00 00 00 00 <empty property of type longstring> 

00 00 00 00 <empty property of type longstring> 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 <8 empty properties of type string> 

04 00 Length of field 

69 64 30 34 Field content: "id04" 

00 00  <empty property> 

03 00 Length of next field 

34 37 31 "471" 

00 00 00 00 

00 00 00 00  

00 00 00 00  

00 00 00 00 

<8 empty properties of type string> 

07 00 Length of next field 

75 6E 6B 6E 6F 77 6E "unknown" 

07 00  Length of next field 

75 6E 6B 6E 6F 77 6E "unknown" 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 

<22 empty properties of type string> 

0F 00 Length of next field 

77 30 31 3B 77 30 32 3B 77 30 33 3B 77 30 34  "w01;w02;w03;w04" 

13 00 Length of next field 



 

82 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Message 1 (query hit 1 in the sorted result) 

77 30 31 3B 77 30 32 3B 77 30 33 3B 77 30 34 
3B 77 30 35 

"w01;w02;w03;w04;w05" 

17 00 Length of next field 

77 30 31 3B 77 30 32 3B 77 30 33 3B 77 30 34 
3B 77 30 35 3B 77 30 36 

"w01;w02;w03;w04;w05;w06" 

01 00 Length of next field 

35 "5" 

01 00 Length of next field 

35 "5" 

01 00 Length of next field 

35 "5" 

00 00 00 00  <empty property of type longstring> 

00 00 00 00 <empty property of type longstring> 

00 <empty property> 

The next two query hits contains content whose format is the same as query hit 1, and therefore are 
not specified in this example.  

Message 2 (query hit 2 in the sorted result) 

00 00 01 20 Message length is 288  

00 00 00 CD Message code is 205 

00 00 01 14 Channel identifier 

00 00 00 03 DocId 

FF FF FF 3F Summaryclass = 1073741823 

 

Message 3 (query hit 3 in the sorted result) 

00 00 01 00 Message length is 256 

00 00 00 CD Message code is 205 

00 00 01 14 Channel identifier 

00 00 00 21 DocId 

FF FF FF 3F Summaryclass = 1073741823 

The following table is the multi-part end message that specifies that the protocol server has sent all 
result details responses. 



 

83 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Message 4 

00 00 00 08 Message length = 8 

00 00 00 C8 Message type = 200 

00 00 01 14 Channel identifier 

4.2   Detailed Query 

4.2.1   Aggregation Examples 

The following examples shows query requests for aggregation and the associated responses. 

4.2.1.1   Basic Numeric Data Aggregation 

The protocol client requests aggregation on a signed 32-bit integer managed property named 

"numeric1", and an aggregation bucket width of 1. This implies that the protocol server returns 
occurrence data for all values (there is a bucket per result value). The aggregator is named 
"bavnnumeric1", and was associated with the "numeric1" managed property in the file named 
index.cf. The request from the client is as follows. 

(max bavnnumeric1)(min bavnnumeric1)(sum bavnnumeric1)(count bavnnumeric1)(countnz 
bavnnumeric1)(hitcount )(hist :width 1 bavnnumeric1) 

The following table describes the query response, beginning with the AggregationData field. 

Signature Value Data type 

00 00 28 14 00 00 00 00 00 10 00 00 max=4096 int32_l 

08 00 28 14 00 00 00 00 01 00 00 00 min=1 int32_l 

10 00 2C 14 00 00 00 00 1C 20 00 00 00 00 00 00 sum=8220 int64_l 

20 03 10 08 00 00 00 00 1F 00 00 00   hitcount=31 uint32_l 

28 03 14 0A 00 00 00 00 10 00 00 00 00 00 00 00 count=16 uint64_l 

30 03 10 08 00 00 00 00 10 00 00 00 countnz=16 uint32_l 

The hist aggregation type occurs next in the response, and it is followed by the histogram buckets. 

Signature Value Data type 

4B 03 28 14 00 00 00 00 10 00 00 00 AggType = 105. 16 rows int32_l 

The aggregation bucket results occur next in the response. 

Data on the wire Value Number of occurrences in the aggregation bucket 

01 00 00 00 01 00 00 00 Numeric=1 Bucket count=1 

02 00 00 00 01 00 00 00 Numeric=2 Bucket count=1 

03 00 00 00 01 00 00 00 Numeric=3 Bucket count=1 



 

84 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Data on the wire Value Number of occurrences in the aggregation bucket 

05 00 00 00 01 00 00 00 Numeric=5 Bucket count=1 

0A 00 00 00 01 00 00 00 Numeric=10 Bucket count=1 

0B 00 00 00 01 00 00 00 Numeric=11 Bucket count=1 

0C 00 00 00 01 00 00 00 Numeric=12 Bucket count=1 

10 00 00 00 01 00 00 00 Numeric=16 Bucket count=1 

20 00 00 00 01 00 00 00 Numeric=32 Bucket count=1 

40 00 00 00 01 00 00 00 Numeric=64 Bucket count=1 

80 00 00 00 01 00 00 00  Numeric=128 Bucket count=1 

00 01 00 00 01 00 00 00  Numeric=256 Bucket count=1 

00 02 00 00 01 00 00 00  Numeric=512 Bucket count=1 

00 04 00 00 01 00 00 00  Numeric=1024 Bucket count=1 

00 08 00 00 01 00 00 00  Numeric=2048 Bucket count=1 

00 10 00 00 01 00 00 00 Numeric=4096 Bucket count=1 

4.2.1.2   Numeric Data Aggregation with Predefined-Width Aggregation Buckets 

The protocol client requests aggregation on a signed 32-bit integer managed property named 
"numeric1". It also requests fixed width aggregation buckets, with value ranges that are described 
as follows. 

Value < 5 

5 <= Value < 10 

10 <= Value < 15 

15 <= Value 

The aggregator is named "bavnnumeric13". The protocol client request for aggregation is shown in 
the following example. 

(max bavnnumeric13)(min bavnnumeric13)(sum bavnnumeric13)(count bavnnumeric13)(countnz 

bavnnumeric13)(hitcount )(hist :buckets '(5 10 15 ) bavnnumeric13) 

The following table specifies the aggregation data part of the query response.  

Signature Value Data type 

00 00 28 14 00 00 00 00 00 10 00 00 max=4096 int32_l 

08 00 28 14 00 00 00 00 01 00 00 00 min=1 int32_l 

10 00 2C 14 00 00 00 00 1C 20 00 00 00 00 00 
00 

sum=8220 int64_l 



 

85 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Signature Value Data type 

20 03 10 08 00 00 00 00 1F 00 00 00 hitcount=31 uint32_l 

28 03 14 0A 00 00 00 00 10 00 00 00 00 00 00 
00 

count=16 uint64_l 

30 03 10 08 00 00 00 00 10 00 00 00 countnz=16 uint32_l 

Signature Histogram aggregation type Number of buckets 

3B 03 10 14 00 00 00 00 04 00 00 00 AggType=103 4 

Data on the wire Bucket index Bucket 
occurrences 

00 00 00 00 03 00 00 00 0 (maps to "Value < 5") 3 

01 00 00 00 01 00 00 00 1 (maps to "5 <= Value < 10") 1 

02 00 00 00 03 00 00 00 2 (maps to "10 <= Value < 
15") 

3 

03 00 00 00 09 00 00 00 3 (maps to "15 <= Value") 9 

4.2.1.3   Numeric Data Aggregation with Aggregation Bucket 

4.2.1.4   Aggregation over One Numeric and One String Managed Property 

The protocol client requests aggregation on a string managed property named "string1" and a 
signed 32-bit integer managed property named "numeric1". The string aggregator is named 
"bavnstring1" and the numeric aggregator is named "bavnnumeric1". The protocol server will return 
information for no more than 1000 unique strings. An aggregation bucket width of 1 is requested for 

the numeric aggregation. The protocol client request for aggregation is described as follows. 

(hist :buckets :unique :cutmaxbuckets 1000 bavnstring1) 

(count bavnstring1)(countnz bavnstring1)(hitcount ) 

(max bavnnumeric1)(min bavnnumeric1)(sum bavnnumeric1)(count bavnnumeric1) 

(countnz bavnnumeric1)(hitcount )(hist :width 1 bavnnumeric1) 

This is the response to the client request. The following table describes the AggregationData field. 
Data on the wire is shown in hexadecimal values in the first column, and decoded attributes are 

shown in the following columns. 

Data on the wire Value Navigator  

00 00 28 14 00 00 00 00 05 00 00 00  max=5 numeric1 

08 00 28 14 00 00 00 00 F6 FF FF FF  min=-10 numeric1 

10 00 2C 14 00 00 00 00 FE FF FF FF FF FF FF FF sum=-2 numeric1 

20 03 10 08 00 00 00 00 03 00 00 00  hitcount=3 string1 

20 03 10 08 00 00 00 00 03 00 00 00  hitcount=3 numeric1 



 

86 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Data on the wire Value Navigator  

28 03 14 0A 00 00 00 00 09 00 00 00 00 00 00 00 count=9  numeric1 

28 03 14 0A 00 00 00 00 03 00 00 00 00 00 00 00 count=3  string1 

30 03 10 08 00 00 00 00 03 00 00 00  countnz=3 numeric1 

30 03 10 08 00 00 00 00 03 00 00 00  countnz=3 string1 

The following data describes the histogram returned for the string aggregator, with aggregator type 
104, 4 aggregation buckets and a payload of 44 bytes. In this example all strings have a length of 3 

bytes. 

Data on the wire Max Error Aggregation buckets 

47 03 04 02 00 00 00 00 00 00 00 00 04 00 00 
00 2C 00 00 00 

0 (so there is no refine 
process) 

4 buckets, 44 bytes in 
size. 

Then, the data for each of the string buckets occurs next in the response. 

Data on the wire String Occurrence count 

03 00 00 00 77 30 31 02 00 00 00 "w01" 2 

03 00 00 00 77 30 32 03 00 00 00 "w02" 3 

03 00 00 00 77 30 33 03 00 00 00 "w03" 3 

03 00 00 00 77 30 34 01 00 00 00 "w04" 1 

The following data specifies the histogram returned for the numeric aggregator, with 3 aggregation 
buckets. 

Data on the wire Histogram aggregation type Number of buckets 

4B 03 28 14 5C C2 CA 39 03 00 00 00 AggType=105 3 

The data for each of the numeric buckets occurs next. 

Data on the wire Numeric1 value Occurrence count 

F6 FF FF FF 01 00 00 00 -10 1 

03 00 00 00 01 00 00 00 3 1 

05 00 00 00 01 00 00 00 5 1 

4.2.1.5   Aggregation with Aggregation Bucket Refine 

In this example, the protocol client requests refinement of an aggregation. 

The protocol client first requests an aggregation of the managed property "string1". The string 
aggregator is named "bavnstring1", and the protocol client requests a cut-off by aggregation bucket 

frequency, where it only returns buckets with more than 2 values. When a cut-off occurs, 



 

87 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

occurrence count values for a bucket can be wrong. The protocol client then sends a new for 
refinement on the aggregation result to recount the occurrence values so that they are correct.  

(hist :buckets :unique :cutfreq 2 bavnstring1)(count bavnstring1)(countnz bavnstring1)(hitcount ) 

This is the response to the client request. The following table describes the AggregationData field. 

Data on the wire is shown in hexadecimal values in the first column, and decoded attributes are 
shown in the following columns. 

Data on the wire Value Navigator  

20 03 10 08 00 00 00 00 1F 00 00 00 hitcount=31 string1 

28 03 14 0A 00 00 00 00 3C 00 00 00 00 00 00 00 count=60 string1 

30 03 10 08 00 00 00 00 1F 00 00 00 countnz=31 string1 

The following data specifies the histogram returned, with 2 aggregation buckets. The maxerror field 

is set, so the protocol client is informed that a cut-off occurred.  

Data on the wire Maxerror field Aggregation bucket 

47 03 04 02 00 00 00 00 02 00 00 00 02 00 00 00 
16 00 00 00 

The maxerror field is set 
to 2 

2 buckets, 22 bytes in 
all. 

The data for each of the string buckets occurs next. 

Data on the wire String length String1 value Occurrence count 

03 00 00 00 77 30 31 1F 00 00 00 3 "w01" 31 

03 00 00 00 77 30 32 1A 00 00 00 3 "w02" 26 

The protocol client reuses the previous request to refine the aggregation on the values that can 

have wrong occurrence counts.  

(hist :buckets :unique :cutfreq 2 bavnstring1)  

(count bavnstring1)(countnz bavnstring1)(hitcount )  

(refine bavnstring1 2 3'w01 3'w02) 

The refine operator requests refinement on 2 string aggregation buckets. The expression "3'w01" 
specifies a string length of 3 whose managed property value is associated with the aggregation 
bucket. 

This is the response to the client refine request. The following table describes the AggregationData 
field. Data on the wire is shown in hexadecimal values in the first column, and decoded attributes 
are shown in the following column. The response contains only the refined aggregation data and not 

any query hits. 

Data on the wire Aggregation bucket count  

52 03 10 08 00 00 00 00 02 00 00 00 2 

The data for each of the refinement buckets occurs next in the response. 



 

88 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Data on the wire Bucket number Recalculated occurrences 

1F 00 00 00 1 31 

1A 00 00 00 1 26 

The aggregation bucket count is returned in the same sequence as in the refinement aggregation 
request. In this case the occurrence was correct even before the refinement, but this was not 
guaranteed because maxerror was set.  

4.2.2   Count Operator 

This example describes the COUNT operator, which differs from other query requests in that it 
specifies the part of the managed property against which the query processes.  The parsed query 

consists of a COUNT operator and an IN operator, and operates against the "title" managed 
property of the search index.  The protocol server returns any items where the term "cnn" occurs 3 
times or more, but less than 5 times. The protocol client request is as follows. 

Required fields 

00 00 00 
68 

Size 104 bytes 

00 00 00 
DA 

Message code: 218 (Query request) 

00 00 00 
58 

Channel identifier  

00 00 28 
06 

Features enabled (rank profile specification, generation specification, field collapsing 
and parsed query bit flags are set) 

00 00 00 
00 

Query type 0 - parsed query 

00 00 00 
00 

Requested Offset. A value of 0 specifies the beginning of the result set. 

00 00 00 
0A 

Maximum number of query hits to return (10).  

00 08 80 
0C 

Query flags field (Allow Error Message, top level search, report queue length, and 
report search coverage bit flags) 

Variable payload fields (as specified in the enabled features flags) 

00 00 00 
08 

Generation table length = 8 

00 00 00 
01  

00 00 00 
00 

Generation table.  

00 00 00 
00 

00 00 00 
00 

Rank profile to use. 



 

89 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Required fields 

00 00 00 
01 

Describes the number of items to keep per collapsed field. The collapse field specification is 
not present, so collapsing does not occur.  

Parsed Query  

00 00 00 
05 

Parsed query, 5 operators. 

00 00 00 
0E 

IN operator 

00 00 00 
02 

The IN operator has an arity of 2. 

00 00 00 
10 

Complete internal property region operator. The IN operator thus covers the whole internal 
property in the COUNT case. 

00 00 00 
12 

COUNT operator (18) 

00 00 00 
02 

Minimum number of occurrences 

00 00 00 
05 

Maximum number of occurrences 

00 00 00 
10 

Complete internal property region operator. The COUNT operator covers the whole internal 
property. 

00 00 00 
04 

A string term 

00 00 00 
05 

The length of the field name is 5 

74 69 74 
6C 65 

The managed property name is "title" 

00 00 00 
03 

The string term has a length of 3 bytes. 

63 6E 6E The string term is "cnn" 

4.2.3   Internal Property Region Search 

This example shows a query that uses an internal property region search on parts of a managed 
property. In the managed property "xml" it searches for items which contain the string "Title-text" 
in the internal property region named "title". The search uses the RANK operator to increase the 
rank for query hits that were also found elsewhere in the managed property.   

Required fields 

00 00 01 30 Size 304 

00 00 00 DA Message code: 218 - Query request. 

00 00 00 7A Channel identifier  



 

90 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Required fields 

00 00 28 06 Features enabled (Rank Profile Specification, Generation Specification, 
Field Collapsing, and Parsed Query bit flags) 

00 00 00 00 Query type. A value of 0 specifies that this is a parsed query 

00 00 00 00 Requested Offset. A value of 0 specifies the beginning of the result set. 

00 00 00 0A Maximum number of query hits to return 

00 08 80 0C Query flags (Allow error message, top level search, report queue 
length, and report search coverage bit flags) 

Optional fields 

00 00 00 08 Generation table length = 8 

00 00 00 01 00 00 00 00 Generation table.  

00 00 00 00 

00 00 00 00 

Rank profile to use. 

00 00 00 01 Describes the number of items to keep per collapsed field. The collapse field 
specification is not present, so collapsing does not occur 

00 00 00 0D Indicates 13 operators, although there are only 11.  

00 00 00 03 RANK operator 

00 00 00 02 Arity 2  

00 00 00 00 Always set to 0. 

00 00 00 0E Contained in the associated Internal property region field 

00 00 00 02 Arity of 2. 

00 00 00 0F Internal property region 

00 00 00 0F Length of index name 

5B 73 5D 5F 62 73 63 70 
78 6D 6C 2E 61 6C 6C 

Name of the index to search. 

00 00 00 07 Length of internal property region specification 

6D 65 73 73 61 67 65 Internal property region: "message" 

00 00 00 0E IN operator 

00 00 00 02 Arity of 2 

01 00 00 0F Internal property region operator. The bitmask for this internal property 
region field specifies that this is the internal property region to return. 

00 00 00 0F Length of the name of the index 

5B 73 5D 5F 62 73  63 
70 78 6D 6C 2E 61 6C 6C 

Name of the index to search 



 

91 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Required fields 

00 00 00 05 Length of internal property region specification 

74 69 74 6C 65 Internal property region: "title" 

00 00 00 0D Ordered NEAR 

00 00 00 02 Arity of 2 

00 00 00 00 Distance=0  

00 00 00 04 String Term 

00 00 00 0F Index name length 

5B 63 5D 5F 62 73 63 70 
78 6D 6C 2E 61 6C 6C 

Name of the index to search 

00 00 00 06 Length of string term 

74 69 74 6C 65 54 "titleT" (query string) 

00 00 00 04 String term 

00 00 00 0F Index name length  

5B 63 5D 5F 62 73 63 70 
78 6D 6C 2E 61 6C 6C 

Name of the index to search 

00 00 00 05 Length of string term 

74 65 78 74 54 "textT" (query string) 

00 00 00 0D Ordered NEAR  

00 00 00 02 Arity of 2 

00 00 00 00 Distance=0 

00 00 00 04 String term 

00 00 00 0F Index name length 

5B 63 5D 5F 62 73 63 70 
78 6D 6C 2E 61 6C 6C 

Name of the index to search 

00 00 00 06 Length of string term 

74 69 74 6C 65 54 "titleT" (query string) 

00 00 00 04 String term 

00 00 00 0F Index name length 

5B 63 5D 5F 62 73 63 70 
78 6D 6C 2E 61 6C 6C 

Name of the index to search 

00 00 00 05 String term length 

74 65 78 74 54 "textT" (query string) 



 

92 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

4.3   PING 

4.3.1   Ping Request 

On the wire Description 

00 00 00 04 Size of remainder of message is 4 bytes 

00 00 00 CE Message code: 206 Ping Request Message 

4.3.2   Ping Request Answer 

On the 

wire Description 

00 00 00 
1C 

Size of message is 28 bytes excluding this field 

00 00 00 
D2 

Message code: 210, Ping response  

00 00 00 
01 

Partition identifier: 1 

49 76 88 
B8 

Time stamp: The time the protocol server started, represented by the number of seconds 
that elapsed after 1970-01-01 (UTC) 

00 00 00 
03 

Total number of search processes: 3 

00 00 00 
02 

Active number of search processes: 2 

00 00 00 
03 

Total partitions: 3 

00 00 00 
02 

Active partitions: 2 

4.4   Error 

4.4.1   Single Error 

This example describes a single error from the protocol server. The channel identifier in the error 
message is the same as the one in the query that failed. 

On the wire Description 

00 00 00 43 Size of message data is 67 bytes  

00 00 00 CB Message code 203 - Error message. 

00 00 00 02 Channel identifier 

00 00 00 08 Error code 8 - Lost connection to 
sub node 



 

93 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

On the wire Description 

00 00 00 1B Error message length (27 bytes) 

4C 6F 73 74 20 63 6F 6E 6E 65 63 74 69 6F 6E 20 74 6F 20 73 75 
62 2D 6E 6F 64 65 

"Lost connection to sub-node" 

4.4.2   Multiple Errors 

This example describes the special error message that the protocol server sends when multiple 
errors occur.  This special message encapsulates all of the error messages that occurred. The error 
code for the second error is specified as a UTF-8 encoded string, rather than a numeric field as for 
the first error code. 

On the wire Description 

00 00 00 5E Size of message data is 94 bytes 

00 00 00 CB Message code 203 - Error message 

00 00 00 0A Channel identifier 

00 00 00 09 Error code 9 -  Multiple errors occurred 

00 00 00 4E Error message length (78 bytes) 

4E 6F 20 65 6E 67 69 6E 65 20 61 76 61 69 6C 61 
62 6C 65 20 66 6F 72 20 70 61 72 74 69 74 69 6F 
6E 20 30 0A 

The first error message, followed by a 
newline(\n). The string is "No engine available for 
partition 0" (36 bytes).  

32 The second error code (50 is the UTF-8 character 
value of "2", which is "Error Parsing Query", error 
code 2).  

27 75 6E 6B 6E 6F 77 6E 20 66 75 6E 63 74 69 6F 
6E 20 6E 61 6D 65 20 61 74 20 69 6C 6C 65 67 61 
6C 20 76 61 6C 75 65 29 27  

The second error string: "'unknown function name 
at illegal value'", which has a length of 41 bytes. 



 

94 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

5   Security 

5.1   Security Considerations for Implementers 

None.  

5.2   Index of Security Parameters 

None.  



 

95 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

6   Appendix A: Product Behavior 

The information in this specification is applicable to the following Microsoft products or supplemental 
software. References to product versions include released service packs: 

Microsoft® FAST™ Search Server 2010 

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number 
appears with the product version, behavior changed in that service pack or QFE. The new behavior 
also applies to subsequent service packs of the product unless otherwise specified. If a product 

edition appears with the product version, behavior is different in that product edition. 

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed 
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD 
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product 
does not follow the prescription. 



 

96 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

7   Change Tracking 

No table of changes is available. The document is either new or has had no changes since its last 
release. 



 

97 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

8   Index 

A 

Abstract data model 
client 57 
common 54 
server 65 

Aggregation examples 83 
Aggregation over one numeric and one string 

managed property example 85 
Aggregation with aggregation bucket refine 

example 86 
Applicability 10 

B 

Basic numeric data aggregation example 83 

C 

Capability negotiation 10 
Change tracking 96 
Client 

abstract data model 57 
higher-layer triggered events 60 
initialization (section 3.1.3 56, section 3.2.3 60) 
message processing 61 
other local events 65 
overview 54 
sequencing rules 61 
timer events 64 
timers 60 

Client - message processing 56 

errors 57 
PING message 56 
query messages 56 
receiving a multi-part message end message 64 
receiving a query response 62 
receiving a queue length message 64 
receiving a refine query response 63 
receiving an error message 61 
receiving result details responses 64 
result details 57 
sending a PING request and receiving a PING 

request answer 61 
sending a query request 61 
sending a refine query request 62 
sending a result details request 63 
sending a statistics query request 64 
sending a statistics query response 64 

Client - sequencing rules 56 
errors 57 
PING message 56 
query messages 56 
receiving a multi-part message end message 64 
receiving a query response 62 
receiving a queue length message 64 
receiving a refine query response 63 
receiving an error message 61 
receiving result details responses 64 

result details 57 
sending a PING request and receiving a PING 

request answer 61 
sending a query request 61 
sending a refine query request 62 
sending a result details request 63 
sending a statistics query request 64 
sending a statistics query response 64 

Common 
abstract data model 54 
higher-layer triggered events 56 
other local events 57 
timer events 57 

Count operator example 88 

D 

Data model - abstract 
client 57 
common 54 
server 65 

E 

Error handling - client 60 
Error Message message 14 
Evaluating queries - server 66 
Examples 

aggregation 83 
aggregation over one numeric and one string 

managed property 85 
aggregation with aggregation bucket refine 86 
basic numeric data aggregation 83 
count operator 88 
full query/result 75 
internal property region search 89 
multiple errors 93 

numeric data aggregation with predefine-width 
aggregation buckets 84 

overview 75 
PING message 92 
PING message - ping request 92 
PING message - ping request answer 92 
query request 75 
query response 78 
result details request message 79 
result details response 80 
single error 92 

F 

Fields - vendor-extensible 10 
Full query/result example 75 

G 

Glossary 6 

H 



 

98 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Handling multiple protocol clients and multiple 
queries per client 
overview 65 

Handling multiple protocol servers 
overview 59 

Handling PING requests 
overview 66 

Higher-layer triggered events 
client 60 
common 56 
server 69 

I 

Implementer - security considerations 94 
Index of security parameters 94 
Informative references 7 
Initialization 

client (section 3.1.3 56, section 3.2.3 60) 

server (section 3.1.3 56, section 3.3.3 68) 
Internal property region search example 89 
Introduction 6 
Issuing a query 

overview 60 

M 

Message processing 
client 61 
server 69 

Message processing - client 
errors 57 
PING message 56 
query messages 56 
receiving a multi-part message end message 64 
receiving a query response 62 
receiving a queue length message 64 
receiving a refine query response 63 
receiving an error message 61 
receiving result details responses 64 
result details 57 
sending a PING request and receiving a PING 

request answer 61 
sending a query request 61 
sending a refine query request 62 
sending a result details request 63 
sending a statistics query request 64 
sending a statistics query response 64 

Message processing - server 
processing queries 70 
receiving a PING request 70 
receiving a query request 70 
receiving a result details request 73 
receiving a statistics query request 74 
sending a PING request answer 69 
sending a query response 70 
sending a result details response 72 
sending a statistics query response 74 

Messages 
Error Message 14 
errors 57 

Multi-part Message End 12 

Numeric Data Format Conventions 11 
PING 56 
PING Request Answer Message 13 
PING Request Message 12 
queries 56 
Query operators 30 
Query Request 17 
Query Response 37 
Queue Length Message 51 
result details 57 
Result Details Request 47 
Result Details Response 50 
Statistics Query Request 52 
Statistics Query Response 53 
transport 11 

Messaging processing - client 56 
Messaging processing - server 56 
Multi-part Message End message 12 
Multiple errors example 93 

N 

Normative references 7 
Numeric data aggregation with predefined-width 

aggregation buckets example 84 
Numeric Data Format Conventions message 11 

O 

Other local events 
client 65 
common 57 
server 74 

Overview (synopsis) 7 

P 

Parameters - security index 94 
PING message example 92 

ping request 92 
ping request answer 92 

PING Request Answer Message message 13 
PING Request Message message 12 
Preconditions 9 
Prerequisites 9 
Product behavior 95 

Q 

Query operators 30 
Query request example 75 
Query Request message 17 
Query response example 78 

Query Response message 37 
Queue Length Message message 51 

R 

References 6 
informative 7 
normative 7 

Relationship to other protocols 9 



 

99 / 99 

[MS-FSDQE] — v20120630   
 Distributed Query Execution Protocol Specification  
 
 Copyright © 2012 Microsoft Corporation.  
 
 Release: July 16, 2012  

Result Details Request message 47 
Result details request message example 79 
Result details response example 80 
Result Details Response message 50 
Returning query hit details 

overview 67 

S 

Search index 
overview 66 

Security 
implementer considerations 94 
parameter index 94 

Sequencing files - server 
receiving a result details request 73 

Sequencing rule - server 
sending a PING request answer 69 

Sequencing rules 

client 61 
server 69 

Sequencing rules - client 56 
errors 57 
PING message 56 
query messages 56 
receiving a multi-part message end message 64 
receiving a query response 62 
receiving a queue length message 64 
receiving a refine query response 63 
receiving an error message 61 
receiving result details responses 64 
result details (section 3.1.5.3 57, section 3.1.5.4 

57) 
sending a PING request and receiving a PING 

request answer 61 
sending a query request 61 
sending a refine query request 62 
sending a result details request 63 
sending a statistics query request 64 
sending a statistics query response 64 

Sequencing rules - server 56 
processing queries 70 
receiving a PING request 70 
receiving a query request 70 
receiving a statistics query request 74 
sending a query response 70 
sending a result details response 72 
sending a statistics query response 74 

Server 
abstract data model 65 
higher-layer triggered events 69 
initialization (section 3.1.3 56, section 3.3.3 68) 
message processing 69 
other local events 74 
overview 54 
sequencing rules 69 
timer events 74 
timers 68 

Server - message processing 56 
processing queries 70 
receiving a PING request 70 
receiving a query request 70 

receiving a result details request 73 
receiving a statistics query request 74 
sending a PING request answer 69 
sending a query response 70 
sending a result details response 72 
sending a statistics query response 74 

Server - sequencing rules 56 
processing queries 70 
receiving a PING request 70 
receiving a query request 70 
receiving a result details request 73 
receiving a statistics query request 74 
sending a PING request answer 69 
sending a query response 70 
sending a result details response 72 
sending a statistics query response 74 

Single error example 92 
Standards assignments 10 
Statistics Query Request message 52 
Statistics Query Response message 53 

T 

Timer events 
client 64 
common 57 
server 74 

Timers 
client 60 
common 56 
server 68 

Tracking changes 96 
Transport 11 
Triggered events - higher-layer 

client 60 
common 56 
server 69 

V 

Vendor-extensible fields 10 
Versioning 10 


	Table of Contents
	1   Introduction
	1.1   Glossary
	1.2   References
	1.2.1   Normative References
	1.2.2   Informative References

	1.3   Protocol Overview (Synopsis)
	1.4   Relationship to Other Protocols
	1.5   Prerequisites/Preconditions
	1.6   Applicability Statement
	1.7   Versioning and Capability Negotiation
	1.8   Vendor-Extensible Fields
	1.9   Standards Assignments

	2   Messages
	2.1   Transport
	2.2   Message Syntax
	2.2.1   Numeric Data Format Conventions
	2.2.2   Multi-part Message End
	2.2.3   PING Request Message
	2.2.4   PING Request Answer Message
	2.2.5   Error Message
	2.2.6   Query Request
	2.2.6.1   Query operators

	2.2.7   Query Response
	2.2.8   Result Details Request
	2.2.9   Result Details Response
	2.2.10   Queue Length Message
	2.2.11   Statistics Query Request
	2.2.12   Statistics Query Response


	3   Protocol Details
	3.1   Common Details
	3.1.1   Common Abstract Data Model
	3.1.2   Timers
	3.1.3   Initialization
	3.1.4   Higher-Layer Triggered Events
	3.1.5   Message Processing Events and Sequencing Rules
	3.1.5.1   PING
	3.1.5.2   Query
	3.1.5.3   Result Details
	3.1.5.4   Errors

	3.1.6   Timer Events
	3.1.7   Other Local Events

	3.2   Client Details
	3.2.1   Abstract Data Model
	3.2.1.1   Handling Multiple Protocol Servers
	3.2.1.2   Error Handling
	3.2.1.3   Issuing a Query

	3.2.2   Timers
	3.2.3   Initialization
	3.2.4   Higher-Layer Triggered Events
	3.2.5   Message Processing Events and Sequencing Rules
	3.2.5.1   Receiving an Error Message
	3.2.5.2   PING Request and Response
	3.2.5.2.1   Sending a PING Request and Receiving a PING Request Answer

	3.2.5.3   Query Request and Response
	3.2.5.3.1   Sending a Query Request
	3.2.5.3.2   Receiving a Query Response
	3.2.5.3.3   Sending a Refine Query Request
	3.2.5.3.4   Receiving a Refine Query Response

	3.2.5.4   Result Details Request and Response
	3.2.5.4.1   Sending a Result Details Request
	3.2.5.4.2   Receiving Result Details Responses
	3.2.5.4.3   Receiving a Multi-part Message End Message

	3.2.5.5   Receiving a Queue Length Message
	3.2.5.6   Statistics Query Request and Response
	3.2.5.6.1   Sending a Statistics Query Request
	3.2.5.6.2   Receiving a Statistics Query Response


	3.2.6   Timer Events
	3.2.7   Other Local Events

	3.3   Server Details
	3.3.1   Abstract Data Model
	3.3.1.1   Handling Multiple Protocol Clients and Multiple Queries per Client
	3.3.1.2   Handling PING Requests
	3.3.1.3   Search Index
	3.3.1.4   Evaluating Queries
	3.3.1.5   Returning Query Hit Details

	3.3.2   Timers
	3.3.3   Initialization
	3.3.4   Higher-Layer Triggered Events
	3.3.5   Message Processing Events and Sequencing Rules
	3.3.5.1   Monitoring the Protocol Connection
	3.3.5.1.1   Messages
	3.3.5.1.1.1   Sending a PING Request answer
	3.3.5.1.1.2   Receiving a PING Request


	3.3.5.2   Processing Queries
	3.3.5.2.1   Messages
	3.3.5.2.1.1   Sending a Query Response
	3.3.5.2.1.2   Receiving a Query Request


	3.3.5.3   Returning Results
	3.3.5.3.1   Messages
	3.3.5.3.1.1   Sending a Result Details Response
	3.3.5.3.1.2   Receiving a Result Details Request


	3.3.5.4   Returning statistics
	3.3.5.4.1   Messages
	3.3.5.4.1.1   Sending a Statistics Query Response
	3.3.5.4.1.2   Receiving a Statistics Query Request



	3.3.6   Timer Events
	3.3.7   Other Local Events


	4   Protocol Examples
	4.1   Full Query/Result
	4.1.1   Query Request
	4.1.2   Query Response
	4.1.3   Result Details Request Message
	4.1.4   Result Details Response

	4.2   Detailed Query
	4.2.1   Aggregation Examples
	4.2.1.1   Basic Numeric Data Aggregation
	4.2.1.2   Numeric Data Aggregation with Predefined-Width Aggregation Buckets
	4.2.1.3   Numeric Data Aggregation with Aggregation Bucket
	4.2.1.4   Aggregation over One Numeric and One String Managed Property
	4.2.1.5   Aggregation with Aggregation Bucket Refine

	4.2.2   Count Operator
	4.2.3   Internal Property Region Search

	4.3   PING
	4.3.1   Ping Request
	4.3.2   Ping Request Answer

	4.4   Error
	4.4.1   Single Error
	4.4.2   Multiple Errors


	5   Security
	5.1   Security Considerations for Implementers
	5.2   Index of Security Parameters

	6   Appendix A: Product Behavior
	7   Change Tracking
	8   Index

