

1 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

[MS-FSIXDS]:
Index Data Structures

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain

Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com

2 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Revision Summary

Date

Revision

History

Revision

Class Comments

02/19/2010 1.0 Major Initial Availability

03/31/2010 1.01 Editorial Revised and edited the technical content

04/30/2010 1.02 Minor Updated the technical content

06/07/2010 1.03 Editorial Revised and edited the technical content

06/29/2010 1.04 Editorial Changed language and formatting in the technical
content.

07/23/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

09/27/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

11/15/2010 1.04 No change No changes to the meaning, language, or formatting of
the technical content.

12/17/2010 1.05 Minor Clarified the meaning of the technical content.

03/18/2011 1.05 No change No changes to the meaning, language, or formatting of
the technical content.

06/10/2011 1.05 No change No changes to the meaning, language, or formatting of
the technical content.

01/20/2012 1.05 No change No changes to the meaning, language, or formatting of
the technical content.

04/11/2012 1.05 No change No changes to the meaning, language, or formatting of
the technical content.

07/16/2012 1.05 No change No changes to the meaning, language, or formatting of
the technical content.

3 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Table of Contents

1 Introduction ... 7
1.1 Glossary ... 7
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Structure Overview (Synopsis) .. 8
1.3.1 Index File Set .. 9
1.3.2 Dictionary File Set .. 12
1.3.3 State File Set ... 12
1.3.4 Generation File Set ... 13
1.3.5 Counter File Set ... 13

1.4 Relationship to Protocols and Other Structures .. 13
1.5 Applicability Statement ... 14
1.6 Versioning and Localization ... 14
1.7 Vendor-Extensible Fields ... 14

2 Structures .. 15
2.1 Index File Set .. 15

2.1.1 Common Formats ... 15
2.1.1.1 Byte Ordering .. 15
2.1.1.2 Data Types and Internal Format Conversion ... 15

2.1.1.2.1 Internal Text Data Type ... 15
2.1.1.2.2 Internal Numeric Data Type .. 16

2.1.1.3 Producer Information .. 19
2.1.1.4 Consumer Information .. 19

2.1.2 Index Configuration File .. 20
2.1.3 Index Partition Tuning File ... 20
2.1.4 Indexed OK Stamp File ... 20
2.1.5 Merged Findex Done Stamp File ... 21
2.1.6 Stamp Text File .. 21
2.1.7 Attribute Vector Indexing Information File ... 21
2.1.8 Attribute Vector Search Information File .. 22
2.1.9 Document Identifier Map File ... 23
2.1.10 Sorted Document Identifier Map File ... 23
2.1.11 Version Information File .. 24
2.1.12 Range Information File .. 24
2.1.13 Attribute Vector Files .. 25

2.1.13.1 Data File .. 27
2.1.13.2 Entry Index File .. 28
2.1.13.3 Index File .. 28
2.1.13.4 Information File .. 29
2.1.13.5 Sorted Unique Data File ... 31

2.1.14 Property Context Catalog File ... 31
2.1.14.1 Overview ... 31

2.1.14.1.1 Local Terminology ... 31
2.1.14.1.2 Index Configuration ... 32
2.1.14.1.3 Context Catalog Files ... 33
2.1.14.1.4 Binary Data Fields ... 33

2.1.14.1.4.1 Common Algorithms for Decoding Binary Encoded Fields 35
2.1.14.1.4.2 NextBit Subroutine ... 35

4 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.14.1.4.3 ONES Subroutine ... 35
2.1.14.1.4.4 ReadN Subroutine .. 35
2.1.14.1.4.5 RICE-S Decoding Subroutine ... 35
2.1.14.1.4.6 Decode32 Decoding Subroutine ... 36
2.1.14.1.4.7 RICE-C Decoding Subroutine ... 36
2.1.14.1.4.8 RICE-D Decoding Subroutine ... 36
2.1.14.1.4.9 RICE-D0 Decoding Subroutine ... 36
2.1.14.1.4.10 RICE-BOOL Decoding Subroutine ... 37
2.1.14.1.4.11 RICE-2 Decoding Subroutine ... 37
2.1.14.1.4.12 DECODE64-D0 Subroutine .. 37
2.1.14.1.4.13 DECODE64-D Subroutine .. 38

2.1.14.2 Boolean Occurrences ... 38
2.1.14.2.1 Bit-vector Data File .. 38
2.1.14.2.2 Bit-vector Index File .. 39
2.1.14.2.3 Compressed Occurrence Counts File .. 40
2.1.14.2.4 Data Compressed Sizes File .. 41
2.1.14.2.5 Binary Data File... 42

2.1.14.2.5.1 Binary Data Field ... 42
2.1.14.3 Position Occurrences Files .. 44

2.1.14.3.1 Compressed Sizes File .. 44
2.1.14.3.2 Compressed Occurrence Counts File .. 45
2.1.14.3.3 Binary Data File... 46

2.1.14.3.3.1 Binary Data Field ... 47
2.1.14.4 Dictionary Files ... 49

2.1.14.4.1 Paged Count Data File .. 49
2.1.14.4.2 Paged Count Index File .. 51
2.1.14.4.3 Paged Data File ... 51

2.1.14.4.3.1 Sparse Binary Data Field ... 53
2.1.14.4.3.2 Between Binary Data Field .. 54
2.1.14.4.3.3 Token Offsets .. 55
2.1.14.4.3.4 LCP Entries ... 56

2.1.14.4.4 Paged Index File .. 58
2.1.14.4.5 Sorted Hash File .. 59
2.1.14.4.6 Token Number Count Index File .. 59
2.1.14.4.7 Token Number Index File ... 60
2.1.14.4.8 Warmup File ... 60

2.1.15 Integer Occurrence Index Files ... 61
2.1.15.1 Overview ... 61
2.1.15.2 Bit-vector Data File ... 62
2.1.15.3 Bit-Vector Greater Than Index File .. 63
2.1.15.4 Bit-vector Index File .. 64
2.1.15.5 Bit-vector Less than Index File ... 66
2.1.15.6 Bit-vector Unique Index File ... 67
2.1.15.7 Data File .. 68
2.1.15.8 Index File .. 69
2.1.15.9 Limits File .. 70
2.1.15.10 Sparse Index File .. 70
2.1.15.11 Sparse Sparse Index File .. 71

2.1.16 Document Summary Files .. 71
2.1.16.1 Overview ... 71
2.1.16.2 Data File .. 72
2.1.16.3 Index File .. 73
2.1.16.4 Overflow File .. 74

5 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.16.5 Quantity Count File ... 75
2.1.17 Unique Identity Data File ... 75
2.1.18 Duplicates Data File .. 78
2.1.19 Duplicates Text File... 78

2.2 Dictionary File Set.. 79
2.2.1 Index Configuration File .. 79
2.2.2 Index Partition Tuning File ... 79
2.2.3 Stamp Text File .. 79
2.2.4 Version Information File .. 79
2.2.5 Merged Fusion Dictionary Counts Done Stamp File.. 80
2.2.6 Dictionary Paged Count Data File.. 80
2.2.7 Dictionary Paged Count Index File .. 80
2.2.8 Dictionary Token number Count Index File .. 80

2.3 State File Set .. 80
2.3.1 Index Set Generation File .. 80
2.3.2 Index Set Stamp File .. 81
2.3.3 Index Partition Stamp File ... 81
2.3.4 Index Partition Index Valid File .. 81

2.4 Generation File Set .. 81
2.4.1 Stamp File ... 81
2.4.2 Sorted Document Identifier Map File ... 82
2.4.3 Exclusion Listed File .. 82

2.5 Counter File Set ... 83
2.5.1 Activated Counter File ... 83
2.5.2 Activated Counter Stamp File ... 83
2.5.3 Activated Indexed Counter File .. 83
2.5.4 Activated Indexed Counter Stamp File .. 83
2.5.5 Index Counter File .. 84
2.5.6 Index Counter Stamp File .. 84

3 Structure Examples .. 85
3.1 Full Index Directory Structure ... 85
3.2 URL Map File ... 97
3.3 Attribute Vector Data File .. 97
3.4 Attribute Vector Enum File .. 97
3.5 Boolean Occurrences Bit-vector File ... 97
3.6 Boolean Occurrences Bit Compressed Count File .. 98
3.7 Boolean Occurrences Compressed Data File .. 99
3.8 Position Occurrences Compressed Data File .. 105
3.9 Dictionary Paged Data File ... 106

3.9.1 Page Header ... 106
3.9.2 Sparse Region... 106
3.9.3 BETWEEN Region .. 107
3.9.4 Word Offsets .. 108
3.9.5 LCP Entries ... 108

3.10 Dictionary Paged Index File .. 109
3.11 Dictionary Sorted Hash File .. 109
3.12 Integer Occurrences Bit-vector Index File .. 110
3.13 Integer Occurrences Bit-vector Unique Index File .. 111
3.14 Integer Occurrences Data File ... 111
3.15 Integer Occurrences Index File ... 111
3.16 Document Summary Data File .. 111
3.17 Document Summary Index File ... 112

6 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3.18 Unique Identity Data File ... 112
3.19 Dictionary Paged Count File .. 113

4 Security Considerations .. 117

5 Appendix A: Product Behavior .. 118

6 Change Tracking... 119

7 Index ... 120

7 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

1 Introduction

This document specifies the Index Data Structures, as well as the file format and hierarchy of the
files that represent the search index in an enterprise search service.

Sections 1.7 and 2 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. All other sections and examples in this
specification are informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

Augmented Backus-Naur Form (ABNF)
little-endian
MD5 hash
schema object
UTF-8

The following terms are defined in [MS-OFCGLOS]:

attribute vector
backup indexer node
Boolean occurrences
content collection
context catalog
datetime

document identifier
document summary
dynamic rank
index partition
index schema
indexing component

item

managed property
master indexer node
position occurrences
property context
property index
query matching component
query matching node

query refinement
search query
search service application
token
token ordinal number

The following terms are specific to this document:

occurrence file: A file that contains information about the position and occurrence of a token in
indexed items.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317

8 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the technical documents, which are updated frequently. References

to other documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[MS-FSCX] Microsoft Corporation, "Configuration (XML-RPC) Protocol Specification".

[MS-FSDQE] Microsoft Corporation, "Distributed Query Execution Protocol Specification".

[MS-FSFIXML] Microsoft Corporation, "FIXML Data Structure".

[MS-FSIPA] Microsoft Corporation, "Index Publication and Activation Protocol Specification".

[MS-FSRFC] Microsoft Corporation, "Remote File Copy Protocol Specification".

[MS-FSRFCO] Microsoft Corporation, "Remote File Copy Orchestration Protocol Specification".

[MS-FSSCFG] Microsoft Corporation, "Search Configuration File Format Specification".

[RFC1950] Deutsch, P., and Gailly, J-L., "ZLIB Compressed Data Format Specification version 3.3",
RFC 1950, May 1996, http://www.ietf.org/rfc/rfc1950.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD

68, RFC 5234, January 2008, http://www.rfc-editor.org/rfc/rfc5234.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-OFCGLOS] Microsoft Corporation, "Microsoft Office Master Glossary".

1.3 Structure Overview (Synopsis)

This document specifies the file sets produced on a master indexer node and consumed by one or
more instances of a backup indexer node or query matching node .

These file sets are only copied over the network when the search service application is set up to
have a query matching node or backup indexer node on a different computer than the master

indexer node.

The content of these files is transferred using the remote file copy protocol, as described in [MS-
FSRFC]. There are five different file sets. Each file set is associated with the subscription name, as

described in the Remote File Copy Orchestration Protocol in [MS-FSRFCO] section 3.2.1. The Remote
File Copy Orchestration Protocol in [MS-FSRFCO] determines which files to copy. The Remote File
Copy Protocol [MS-FSRFC] performs the actual file transfer of each individual file in the file sets.

mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-FSCX%5d.pdf
%5bMS-FSDQE%5d.pdf
%5bMS-FSFIXML%5d.pdf
%5bMS-FSIPA%5d.pdf
%5bMS-FSRFC%5d.pdf
%5bMS-FSRFCO%5d.pdf
%5bMS-FSSCFG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90301
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=123096
%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSRFC%5d.pdf
%5bMS-FSRFC%5d.pdf
%5bMS-FSRFCO%5d.pdf

9 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

These file sets are the following:

Index

Dictionary

State

Generation

Counter

The file structures described in section 2 follow this file set hierarchy. All files that belong to one file
set are described in the same subsection in section 2.

1.3.1 Index File Set

Consisting of files used by the query matching component for matching purposes, the files in the
index file set are part of an index partition.

The master indexer node chooses the set of items to include in an index partition, then generates
the index files, and copies the files to query matching nodes and backup indexer nodes.

Multiple, different index file sets can be copied to the same query matching node, and each index

file set will be processed by a query matching component. The index file sets are stored on a query
matching node, as described in the following diagram.

10 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Figure 1: Index file set placement in system

Each separate index file set is stored in a unique path. The path contains a part that describes which

index partition number is associated with the index file set. This is the PP part of the path for the
index file sets specified in section 2.1. The path also contains a timestamp, as described in the TTTT
part of the path.

The index files for one index file set are stored in a directory hierarchy partially governed by the
configuration file index.cf, as described in [MS-FSSCFG] section 2.9.

%5bMS-FSSCFG%5d.pdf

11 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The query matching component uses these files for matching search queries submitted using
the protocol described in [MS-FSDQE].

The index files are classified into index file subsets, using boxes, and hierarchically structured, using
lines, as described in the following diagram. For each index file subset the cardinality information

about the line pointing into the group of files describes whether there can be only one instance
(1..1) or if there can be multiple (1..*) instances of the index file subset. The boxes that are placed
on the same vertical position are on the same directory level. A box that is beneath and to the right
of another box is one directory level lower.

Figure 2: Overview of index files

Each index file subset describes the base for specific features of the query matching component.

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSDQE%5d.pdf

12 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Index configuration and information files: contain information about how the index is structured,

which enables query matching components and indexing components to use these files.

Document summary file subset: For each item that matches a query and is to be displayed on

the search front-end, parts of item information in these files is processed and sent to the search
front end during a document summary request.

Attribute vector file subset: contains attribute vector information used by the query matching

component to sort, rank and collapse search results, and also to produce an aggregated data set
that will be presented by the search front end.

Full-text index context catalog directory: For each full-text index context catalog described in

the index configuration a directory is created. Within this directory a set of dictionary files and
sub-directories with Boolean occurrences and position occurrences files are created. This file
set contains the inverted index files for textual keyword lookup.

Dictionary file subset: contains a dictionary of all tokens with extra information for each token,

such as the number of items the token appeared in, and the total number of occurrences of the

token in the index. This information is used by the query matching component for ranking

purposes and to determine which parts of the Boolean occurrence or position occurrences files to
read.

Boolean and position occurrences file subset: contains information about the items in which the

token exists. The number of times a token occurs, property index and position information for the
token in each item is also contained in these files, and this is used to calculate the rank of each
item.

Numeric context catalog directory: is a directory that contains all the numeric managed property

directories.

Numeric managed property directory: for each numeric managed property, a directory of this

type is made, that contains the numeric index file set for the numeric managed property.

Numeric index file subset: contains information that is used by the query matching component to

evaluate which items match the numeric parts of a query. This file set contains the inverted index
files for numeric value lookup.

1.3.2 Dictionary File Set

The dictionary file set consists of a subset of the files in an index file set, as described in section
1.3.1. The indexing component can merge dictionary files of one or more index partitions into one
global dictionary file set. This global dictionary file set represents the full set of tokens for the index

partitions that were included.

This merged dictionary file set can then be used by the query matching component to look up the
term frequency for each token and how many occurrences there were in total for that token. These
global dictionary count fields are used by the query matching component to calculate the dynamic
rank.

1.3.3 State File Set

On each indexing node, the indexed items are partitioned into a disjointed set of index partitions.
The indexing nodes use the state file set to identify the currently active set, or generation, of index
partitions. The state file set consists of the following files:

An index set generation file that describes which index file sets are currently active.

%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

13 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

An index set stamp file that describes the time when the index set became active.

Index partition stamp files, one per index partition that describes the time when the index

partition was created.

Index partition valid files, one per index partition that describes whether or not the index

partition is valid.

1.3.4 Generation File Set

When a set of changes has occurred to the set of indexed items in an index partition, a new index
generation can be created. The set of changes is decided by the indexing component. Each index

generation has an associated index file set, but a new index generation does not require a new
index file set. If items are removed, for example, the new index generation reuses the index file set
of the previous generation and generates an additional exclusion list. The removed items are then
excluded by the query matching component using this additional exclusion list.

The generation file set consists of the following files:

A time stamp file that describes the creation time of the index generation.

An exclusion list file that describes which items have been submitted for exclusion on the query

matching nodes.

A sorted item file that describes the items contained in the index partition, and whether or not

they have been submitted for exclusion on the query matching nodes.

1.3.5 Counter File Set

The counter file set is used by the master indexer to determine when to re-index an index partition.
This file set is also used by backup indexer nodes. There is one counter file set per index partition.

The counter file set consists of the following files:

A counter file that describes how many times the index partition has been indexed.

A counter file that describes how many times the index partition has been activated.

A counter file that describes how many times the index partition has been both indexed and

activated.

Time stamp files that describes the time when the preceding counter files were created.

1.4 Relationship to Protocols and Other Structures

The following references describe related protocols and structures:

[MS-FSRFC] describes the protocol used to copy the files that contain the data structures.

[MS-FSRFCO] describes the protocol that determines the file sets to copy.

[MS-FSSCFG] describes the index configuration files that control the layout of the index.

[MS-FSDQE] describes the protocol for the query matching component that reads the files.

[MS-FSFIXML] describes the item structure that the indexing component typically uses for input.

%5bMS-FSRFC%5d.pdf
%5bMS-FSRFCO%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSDQE%5d.pdf
%5bMS-FSFIXML%5d.pdf

14 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

1.5 Applicability Statement

The file names, directory structure and file data structures in this specification are applicable only to
the following cases:

Copying these files to a protocol server that uses the protocol, as described in [MS-FSRFC].

Processing these files on a search server that uses these files and returns results based on this

processing. The requests and results use the protocol, as described in [MS-FSDQE].

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

None.

%5bMS-FSRFC%5d.pdf
%5bMS-FSDQE%5d.pdf

15 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2 Structures

Each file is specified in each subsection in this section.

In addition, the exact file name and path in the directory hierarchy is specified in the beginning of
the description for each file type. This makes it possible to map the specified file in a directory
hierarchy back to its section in the document. The path is based on the root directory for the file
group. The PP, TT, TTTT, FQDN and NN notation used in the path specifications for the following
sections is specified in the subscription mapping in [MS-FSRFCO] section 3.2.1.

A file name without a directory prefix means that the file is in the root directory of the file set. All

files and paths MUST use the uppercase or lowercase format as specified in the file name and path
for each type of file.

Some file types can exist in multiple paths. These files have a path specification that includes a
variable. This variable is explained in the overview section for the file set.

2.1 Index File Set

Specifies the directory structure, file naming and the internal format of each type of file in each

index file set.

The index configuration specifies the exact directory structure and file naming of a specified index.

2.1.1 Common Formats

The index files specified in this section share some common information.

2.1.1.1 Byte Ordering

All multi-byte numeric fields in the search index files MUST be represented in little-endian order.
This order is used for the information fields that originated from the original items, and also the
generated numeric fields such as count and offset values in the index files to the data files.

For string fields in the index and data files, the order of the bytes is specified for each file type in the
following sections. For some strings the representation MUST be in ASCII, and for others it MUST be
in UTF-8.

2.1.1.2 Data Types and Internal Format Conversion

2.1.1.2.1 Internal Text Data Type

Managed properties of type text and Boolean MUST be represented in each full-text index context
catalog and attribute vector files as type string.

The content of a managed property of type text MUST be stored in the string attribute vector files

directly in the original byte by byte representation.

Managed property content MUST also be stored in the relevant property context catalog files. An

additional suffix character can be added to the token for implementation-specific purposes. The
indexing component may use this to mark tokens, as specified in [MS-FSDQE] section 2.2.6.1.

Each string in the string attribute vector files MUST be in UTF-8 format and delimited by a zero
termination character, 0x00.

%5bMS-FSRFCO%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-FSDQE%5d.pdf

16 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The content of a managed property of type Boolean is indexed as the token true or false. In the
attribute vector files, the token string is terminated with the zero termination character, 0x00.

A string in UTF-8 format is specified using the following Augmented Backus-Naur Form (ABNF)
grammar, as specified in [RFC5234].

UTF8-string = 1*UTF8-char

UTF8-char = ASCII-char / UTF8-non-ASCII-chars

ASCII-char = %x21-7E

UTF8-non-ASCII-chars = (%xC0-DF 1UTF8-CONTENT) /

 (%xE0-EF 2UTF8-CONTENT) /

 (%xF0-F7 3UTF8-CONTENT) /

 (%xF8-FB 4UTF8-CONTENT) /

 (%xFC-FD 5UTF8-CONTENT)

UTF8-CONTENT = %x80-BF

This UTF-8 string ABNF grammar is used in some of the file specifications using ABNF in the

following sections, and it MUST be added to the file ABNF to complete it.

2.1.1.2.2 Internal Numeric Data Type

Managed properties of type integer, float, decimal, and datetime are converted to a specific
numeric representation internally in the numeric attribute vector and integer index files.

The table in this section specifies how data type fields in an item are converted and stored by the
indexing component into the internal representation in the numeric attribute vector and integer
index files. The indexing component typically reads these data type fields for an item stored as
FIXML, as specified in [MS-FSFIXML].

The indexing component and query matching component read the maptransform.xml file, as

specified in [MS-FSSCFG] section 2.2, to determine the mapping from external representation to
internal representation. The information in the maptransform.xml file and in the following table is
used to convert numeric data types to the internal representation.

The schema abstract data model data type is the data type of a managed property, as specified in
[MS-FSSCFG] section 1.3.2.1 and described in the following table.

Schema

abstract

data model

data type

Internal type, as

specified in

maptransform.xml Conversion explanation

integer INT For integer occurrence index files, the integer key fields are
specified using 64-bit integers in little-endian order. For
positive values, the highest bit MUST be set to 1; for negative
values, the highest bit MUST be set to 0.

For attribute vector files, the integer is specified using 64-bit
signed integers in little-endian order.

float FLOAT2B A managed property of type float is specified using the
FLOAT2B data type specified in the maptransform.xml file. In
this data type 52 bits are used for the mantissa, 11 bits for the
exponent, and 1 for the sign-bit. The numeric base MUST be 2.
The following algorithm converts a floating point number num
to the internal format.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=113442
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSFIXML%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf

17 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Schema

abstract

data model

data type

Internal type, as

specified in

maptransform.xml Conversion explanation

SET maxMan = 2^52 – 1

SET maxExp = 2^10 – 1

SET manFactor = 10^floor(log10(maxMan)) ; = 10^15

SET manOffset = 0

SET exp = ceil(log2(abs(num)))

SET frac = num*2^(-exp)

IF abs(frac) >=1 THEN

 SET frac=frac/2

 SET exp=exp+1

END IF

IF abs(exp) > maxExp THEN

 SET frac = sign(frac)

 SET exp = maxExp * sign(exp)

ENDIF

SET frac = (frac * manFactor) + manOffset

SET frac = minimum(frac,maxMan) * sign(frac)

IF frac == 0 THEN

 SET exp = 0

 SET frac = 0

ELSE

 SET exp = maxExp + (sign(frac) * exp)

END IF

SET sign = 1 - sign(frac)

IF frac < 0 THEN

 SET frac = maxMan + frac

END IF

; Use shift operation to put the parameters inside

an int64

SET transformed = (sign << 63) | (exp << 52) | frac

The transformed value will be an integer of 64 bits.

decimal DECIMAL_NAV
(attribute vectors)

DECIMAL (integer
index)

The decimal fields MUST be converted to the internal format as
follows:

For a specific managed property, the number of decimal
places is specified in the datatype reference for the
corresponding field entry in the maptransform.xml file, as
specified in [MS-FSSCFG] section 2.2.3.3.

The decimal field is multiplied with 10^x, where x is the

decimal-places field for the managed property. This field is
then converted into a signed int64 field. Any excessive
fractional parts after the multiplication MUST be discarded.

For example, with decimal-places set to 3, the original value
3.14159 will be converted to the integer 3141 in the internal
format when indexed. The same transformation MUST be
performed on the query side.

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSSCFG%5d.pdf

18 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Schema

abstract

data model

data type

Internal type, as

specified in

maptransform.xml Conversion explanation

datetime INT The datetime fields are specified as a 64-bit, that is, 8 bytes
unsigned integer. The integer field represents the number of
100 nanoseconds after the date -29000-01-
01T00:00:00.0000000Z.

The conversion MUST be performed based on the following
rules:

Each second has 10*1000*1000 ticks, so each tick is 100

nanoseconds long.

Each minute has 0-59 seconds.

Each hour has 0-59 minutes.

Each day has 0-23 hours.

Each day of the year is represented in the range 0-365, as

specified in the following day offset table: January 1 is day
0. February 1 is day 31. March 1 is day 60. April 1 is day
91. May 1 is day 121. June 1 is day 152. July 1 is day 182.
August 1 is day 213. September 1 is day 244. October 1 is
day 274. November 1 is day 305. December 1 is day 335.

Note that February is assumed to always have 29 days (leap
years). Other day of year offsets can be calculated by the day
offset into each month. For example, August 10 is day offset
213 + 10-1 = 222.

Each year is represented as a number between 0 and

58000, where 0 represents the year 29000 BC.

The number of ticks for each time field is as follows:

TICKS_IN_SECOND = 10 * 1000 * 1000

TICKS_IN_MINUTE = TICKS_IN_SECOND * 60

TICKS_IN_HOUR = TICKS_IN_MINUTE * 60

TICKS_IN_DAY = TICKS_IN_HOUR * 24

TICKS_IN_YEAR = TICKS_IN_DAY * 366

The internal field is calculated as specified in the following

formula:

ticks = years after 29000 BC * TICKS_IN_YEAR + day

of year * TICKS_IN_DAY + hour of day *

TICKS_IN_HOUR + minute of the hour *

TICKS_IN_MINUTE + second into the minute *

TICKS_IN_SECOND + 100th nanoseconds into the second

Positive leap seconds MUST be represented as the closest lower
accepted datetime representation. For example, 2008-31-
12T23:59:60 is represented as 2008-31-12T23:59:59.

%5bMS-OFCGLOS%5d.pdf

19 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.1.3 Producer Information

The content of each item MUST be split, processed and stored in the appropriate index file by the
indexing component. Each item contains the required content based on the index schema, so that all

the features in the query matching component have the necessary information ready.

The indexing component can use the content format, as specified in [MS-FSFIXML], as the input
source for items. Alternative indexing components can use other input formats.

During processing of the items, the indexing component extracts the following information, and sets
up the index files so that the connections between them are as specified for each file type.

Token: Each token is extracted from the text-based content in the item. If using the format for

input, as specified in [MS-FSFIXML], the tokens are contained within the context elements of
text catalog elements. Text catalogs are specified as type text in the indexConfig.xml file, by the
CT_catalog element, as specified in [MS-FSSCFG] section 2.8.3.3. The tokens are separated by
the ASCII character 0x20, except for catalogs that have the ST_substringRange field set to
greater than zero, as specified in [MS-FSSCFG] section 2.8.4.3.

Numeric value: This is extracted from each section in the item that represents a numeric

managed property. For each numeric managed property specified in the index schema, the
indexConfig.xml file MUST contain a corresponding context element in the catalog of type integer
with name "bi1", as specified in [MS-FSSCFG] section 2.8.5.2.1. If using the format for input, as
specified in [MS-FSFIXML], the numeric fields are contained in the context elements of the
catalog named "bi1".

Token identifier: This is a 32-bit numeric field that maps to a specific token. It is calculated

based on the alphabetic order of each token. The alphabetically ordered first token MUST have

token identifier value zero, the next token has token identifier value one, and so on.

Document identifier: This is calculated during indexing based on the order of items. The first

item indexed has document identifier zero, the second item indexed has document identifier
one, and so on.

Attribute vector data: This MUST be extracted from the sections of the item that represent the

content that will be used for sorting, ranking, field collapsing and for computing aggregated data
sets. In the format as specified in [MS-FSFIXML], the attribute vector information for one
attribute vector is contained within the avField elements of each attrVec element.

Document summary: This MUST be extracted from the sections of the item that represent the

content to present to the end user. In the format, as specified in [MS-FSFIXML], the document
summaries for an item is contained within the sField elements of the summary element.

2.1.1.4 Consumer Information

Each index file set contains the necessary information so that the query matching component can
perform lookup of information based on the following.

The query matching component MUST retrieve the following identifier values in the index files.

Token: Extracted from the text parts of the query.

Numeric value: Extracted from the numeric parts of the query.

Token identifier. Located in the dictionary files.

Document identifier: Located in the occurrence files.

%5bMS-FSFIXML%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-OFCGLOS%5d.pdf

20 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Attribute vector data: Located in the attribute vector data files based on the document

identifiers in the result set.

Document summary: Located in the document summary files based on the document identifier.

2.1.2 Index Configuration File

The index configuration files MUST always exist for an index file set and are stored in the top level of
the directory hierarchy of an index as "PP\index_TTTT\index_data".

The file names and directory structure of the index data files are partially derived from the index
configuration files, as specified in [MS-FSSCFG]. The configuration files are the following:

index.cf

rank.cf

summary.cf

summary.map

These files are included in the index file set that is copied over the network, as specified in [MS-

FSRFC] and [MS-FSRFCO].

The indexing component produces these files initially for each index file set when the other index
files are generated. If the index schema is updated after system installation, because the system
administrator has run an index schema reconfiguration, one or more of these files can change on
the configuration service node. In that event, the changed files MUST be copied to all the directories
on all the system nodes that have a copy of these files. This copy process is triggered by the
configuration service, as specified in [MS-FSCX]. The indexing and query matching components on

each node receive the files and copy them to the paths where the previous version of the files were
placed.

The consumer of the index configuration files, the query matching component, uses the most
current configuration files to be able to read the structure of the index partition and produce query

results according to the current configuration.

2.1.3 Index Partition Tuning File

Path and file name for this file MUST be "PP\index_TTTT\index_data\indextune.cf", which MUST
exist. Its content is static and is specified using the following ABNF grammar:

indextune = "#" LF

2.1.4 Indexed OK Stamp File

The path and file name for this file MUST be "PP\index_TTTT\index_data\IndexedOK".

It contains the number of items in the index partition. The number of items in the index partition is

used by the query matching and indexing components to validate the other index partition files.

The file is specified using the following ABNF grammar:

indexed-ok = item-count LF

%5bMS-FSSCFG%5d.pdf
%5bMS-FSRFC%5d.pdf
%5bMS-FSRFC%5d.pdf
%5bMS-FSRFCO%5d.pdf
%5bMS-FSCX%5d.pdf

21 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

item-count = 1*10DIGIT

item-count: The number of items in the index partition. The numeric value MUST be in the

range 0 to 4294967295 (0xFFFFFFFF).

2.1.5 Merged Findex Done Stamp File

The path and file name for this file MUST be "PP\index_TTTT\index_data\merged\.findex_done". It
specifies that all files in the index partition are complete and consistent.

It MUST be present and MUST be empty, which means a length of size 0.

The file system timestamp for this file specifies when the indexing component successfully finished
processing this index partition.

2.1.6 Stamp Text File

Path and file name of this file MUST be "PP\index_TTTT\index_data\stamp.txt".

It specifies that all files in the index partition are complete and consistent, and also specifies when
the index partition was generated.

This file MUST be present, and MUST contain the timestamp of the index partition. This is in addition
to the file system timestamp of the .findex_done file. The timestamps of these two files depends on
the implementation and can be different.

The file is specified using the following ABNF grammar:

stamp-txt = index-timestamp

index-timestamp = 1*10DIGIT

index-timestamp: The field specifies the point in time when the process that generates the

index finished successfully. The time is represented as the number of seconds after 1970-01-
01T00:00:00 UTC.

2.1.7 Attribute Vector Indexing Information File

Path and file name of this file MUST be "PP\index_TTTT\index_data\merged\attributevector-
indexing.txt".

This file is separate from the attribute vector file set, as it is global for all attribute vector file set
instances. See section 1.3 for information about the attribute vectors file set.

This file contains the file size of the largest attribute vector data file that was created during
processing of attribute vector information input. The indexing component uses the size information
as a hint as to whether or not to load the attribute vector into memory.

This file MUST be present and is specified using the following ABNF grammar:

attribute-vector-indexing-txt = peak-memory-usage

peak-memory-usage = 1*20DIGIT

22 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The peak-memory-usage field is calculated as specified in the following algorithm, where the set of

attribute_vectors is the list of lines prefixed with the attributevector setting within the index.cf

file, as specified in [MS-FSSCFG] section 2.9.2.4. The attr-name setting of each attributevector is
specified as the second word on each attributevector line. The file name of the attribute vector

data file is created by appending the suffix ".dat" to the attr-name string. The
attribute_vector.size field is the file size of each attribute vector data file, as follows.

SET maxsize = 0

FOREACH attribute_vector IN attribute_vectors

 IF attribute_vector.size > maxsize THEN

 SET maxsize = attribute_vector.size

 END IF

END FOREACH

2.1.8 Attribute Vector Search Information File

Path and file name of this file MUST be "PP\index_TTTT\index_data\merged\attributevector.txt".

This file is separate from the attribute vector file set, as it is global for all attribute vector file set
instances.

This file represents the total memory usage, in bytes, required to read the attribute vector files into

memory. The files that are loaded into memory are the following:

For single-valued attribute vectors, the .eidx and .sudat files.

For multi-valued attribute vectors, the .idx, .eidx, .sudat files.

The query matching component reads this file to determine whether it can load all attribute vector
information into memory. If it cannot load everything, the search process MUST not begin.

This file MUST be present and is specified using the following ABNF grammar:

attribute-vector-txt = total-required-memory-usage

total-required-memory-usage = 1*20DIGIT

total-required-memory-usage: The sum of the enum.ramusage field in each attribute vector

information file, as specified in section 2.1.13.4. This value can be calculated as specified in
the following algorithm.

See section 2.1.13 for how the set of attribute vectors are determined. This set MUST be

input to the attribute_vectors value specified in the following example. The
attribute_vector_info_file name is generated by appending the suffix ".info" to the end of
each attribute vector name.

The attribute_vector.enum_ramusage field is the value of the enum.ramusage line in each
attribute vector information file, as follows.

SET totsize = 0

FOREACH attribute_vector_info_file IN attribute_vectors

 SET totsize = totsize + attribute_vector_info_file.enum_ramusage

END FOREACH

%5bMS-FSSCFG%5d.pdf

23 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.9 Document Identifier Map File

Path and file name of this file MUST be "PP\index_TTTT\index_data\urlmap.txt".

The file specifies the item internal identifier, store identifier and document identifier for all items in

the index partition. The format and definition of the item internal identifier, store identifier and
document identifier are specified after the following ABNF.

This file MUST NOT exist for indexes with zero items. An index with zero items is a valid index
partition. This file MUST exist for indexes with 1 or more items.

The file contains entries of internal name, store identifier and document identifier, as specified in the
following ABNF.

The file can contain duplicates of the item internal identifier. The query matching component

excludes duplicates and includes only the item with the highest document identifier value.

The file is specified using the following ABNF grammar:

urlmap-txt = 1*2147483647(internal-id "," store-id SP doc-id LF)

internal-id = docname-checksum "_" collection-name

store-id = *(ALPHA / DIGIT / "_" / "\" / ".")

doc-id = 1*10DIGIT

docname-checksum = 32HEXDIG

collection-name = *(ALPHA / DIGIT / "-")

urlmap-txt: The document identifier map file that contains lines of the specified type. Maximum

number of items for an index partition is 2^31 - 1.

internal-id: This string uniquely identifies each item in the index.

store-id: A string that specifies the store from which the item was read by the indexing
component. The store identifier is a file name.

doc-id: This contains the internal numeric 32-bit document identifier. This document identifier is

used as a lookup key in many of the other index files.

docname-checksum: An MD5 hash of the original name of the document.

collection-name: A string that specifies the content collection to which the item belongs.

2.1.10 Sorted Document Identifier Map File

Path and file name of this file MUST be "PP\index_TTTT\index_data\urlmap_sorted.txt".

The indexing component uses this file to specify which elements exist in an already created index

partition. The file is not used by the query matching component.

This file MUST NOT exist for index partitions with zero items. It MUST exist for index partitions with
1 or more items.

This file is the sorted representation of the document identifier map file. The file MUST be sorted in
ascending order as specified by each byte of each internal identifier string.

The file is specified using the following ABNF grammar:

%5bMS-GLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf

24 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

urlmap-sorted-txt = 1*2147483647((inc-marker / exc-marker)

 internal-id "," store-id SP doc-id LF)

exc-marker = "#"

inc-marker = "."

internal-id = docname-checksum "_" collection-name

store-id = *(ALPHA / DIGIT / "_" / "\" / ".")

doc-id = 1*10DIGIT

docname-checksum = 32HEXDIG

collection-name = *(ALPHA / DIGIT / "-")

Most of these ABNF fields are in the Document identifier map file ABNF section, as specified in

section 2.1.9.

The only extra fields are the exc-marker and inc-marker characters at the beginning of each line.
The indexing component uses these fields to specify whether a doc-id is excluded or included in
subsequent index updates.

exc-marker: The document MUST be excluded from later index updates.

inc-marker: The document MUST be included in later index updates.

2.1.11 Version Information File

The path and file name of this file MUST be "PP\index_TTTT\index_data\version.txt".

This file specifies the index format version of the index partition. The version MUST contain the
value "1.1". The file is specified using the following ABNF grammar:

version-txt = version-string LF ok-string LF

version-string = "1.1"

ok-string = "Ok"

2.1.12 Range Information File

Path and file name of this file MUST be "PP\index_TTTT\index_data\range".

This file enables the indexing component to specify which store identifiers are used as input for the
items in the index partition.

This file MUST be present.

The start-range and end-range fields specify the range of items to include in the index partition.

The values are used only by the indexing component.

The file named "range" is specified using the following ABNF grammar:

range = items-in-index SP start-range SP end-range LF

items-in-index = 1*10DIGIT

start-range = 1*10DIGIT

end-range = 1*10DIGIT

range: The range file with zero or more entries.

25 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

items-in-index: The number of items in the index partition. A zero indicates there are no items
in the index.

start-range: The start range field for the items included in the index partition.

end-range: The end range field for the items included in the index partition.

2.1.13 Attribute Vector Files

The attribute vector files are used for query refinement and sorting functionality in the query
matching component.

Query refinement or sorting features can be enabled for a managed property, as specified in [MS-
FSSCFG] section 1.3.2. If one of those features is enabled, an attribute vector file set MUST be
generated that contains the query refinement or sort values for each item in the index.

An attribute vector MUST be of the type "query refinement" or the type "sorting".

Query refinement attribute vectors MUST be multi-valued, and always contain zero or more values

per item.

Sorting attribute vectors MUST be single-valued, and always contain exactly one value per item.

The set of attribute vectors that are contained in an index partition is specified in the index.cf file, as
derived from the indexConfig.xml file. This is specified by the attributeVector element, as specified

in [MS-FSSCFG] section 2.8.3.30.

Each attribute vector file set consists of the index and data files, and also the attribute vector
information file, as specified in section 2.1.13.4. This file specifies for each attribute vector the
following information:

The data type of the attribute vector data file.

Whether the attribute vector is multi-valued or single-valued.

The memory requirements for loading various combinations of the attribute vector index and

data files into memory.

The files in the attribute vector file set are related as specified in the following figure.

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf

26 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Figure 3: Attribute vector files relationship

The file name prefix of each attribute vector file set is derived from the name attribute of the
attributeVector element in indexConfig.xml setting, as specified in [MS-FSSCFG] section 2.8.3.30.
This file name prefix is referred to as ATTVNAME in the following individual attribute vector file
specifications. The file name prefix can be ba*, as used in the preceding figure. Each of the attribute
vector files has a suffix that specifies the file type. The file type MUST be ".idx", ".eidx", ".sudat",

".dat", or ".info".

The relationship between the files is as follows:

The attribute vector index file (ba*.idx) MUST be used for lookup in the attribute vector entry

index file (ba*.eidx).

%5bMS-FSSCFG%5d.pdf

27 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The attribute vector entry index file (ba*.eidx) MUST be used for lookup in the attribute vector

sorted unique data file (ba*.sudat).

The attribute vector sorted unique data file (ba*.sudat) contains the attribute vector fields that

will be used by the query matching component. The content of this file is derived from the
attribute vector data file (ba*.dat), and contains the unique (non-duplicate) values of this file.
The values are sorted in ascending order.

The attribute vector data file (ba*.dat) is only used for indexing purposes, to generate the

attribute vector sorted unique data file (ba*.sudat).

The following sections contain more information about the relationship between these files.

2.1.13.1 Data File

Path and file name of this file MUST be "PP\index_TTTT\index_data\merged\ATTVNAME.dat".

This file contains the attribute vector information for all items for the attribute vector. This is used

by the indexing component to enable new index partitions to be created based on existing index
partitions. The query matching component does not require this file. Instead it reads the attribute
vector information from the sorted unique attribute vector data file, as specified in section 2.1.13.5.

An attribute vector data file MUST be of the type specified by the type attribute in the
attributeVector element, as specified in [MS-FSSCFG] section 2.8.4.14. The type MUST be string,
integer, or float. The mapping between the managed property data type and the attribute vector
data type MUST be as specified in section 2.1.1.2.

There MUST be zero or more attribute vector information entries per item. The number of entries
per item is determined in the attribute vector index file, as specified in section 2.1.13.3.

All entries in an attribute vector data file are of type string, int64 or float.

The string attribute vector entry is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

string (variable)

...

string (variable): The string content for this element, specified in UTF-8 format and terminated
by the ASCII character 0x00.

The int64 attribute vector entry is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

integer value

...

%5bMS-FSSCFG%5d.pdf

28 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

integer value (8 bytes): The internal representation of a numeric value. See the conversion
explanations specified in section 2.1.1.2 for how to encode or decode the int64 values.

The float attribute vector entry is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

float value

float value (4 bytes): The internal representation of a float field. See the conversion
explanations specified in section 2.1.1.2 for how to encode or decode the float fields.

2.1.13.2 Entry Index File

The path and file name of this file MUST be "PP\index_TTTT\index_data\merged\ATTVNAME.eidx".

This file enables the query matching component to look up the attribute vector information for a
specific item that is stored in the attribute vector sorted unique data file, as specified in section
2.1.13.5.

This file MUST contain one or more entries. The number of entries in this file is the same as the
number of entries in the attribute vector sorted unique data file. The entry values in the attribute
vector sorted unique data file are specified in section 2.1.13.5.

When the attribute vector that this file represents is single-valued there is no attribute vector index
file that references each entry in this file. In such cases, entry number zero in this file is for
document identifier zero, entry number one is for document identifier one, and so on.

In the cases where the attribute vector is multi-valued, the attribute vector index file will point to
the first entry for each document identifier in this file.

Each entry in the attribute vector entry index file MUST be as specified in the following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

sorted unique data file entry number

sorted unique data file entry number (4 bytes): The entry number for the sorted unique
data file that belongs to the current entry index element. The attribute vector sorted unique
data (.sudat) file consists of one or more entries of fixed or varying size. The query matching
component calculates the entry number in that file for each entry when loading that file into

memory. For string entries of varying sizes, the delimiter zero specifies the length, so the
component can determine where a new entry begins. Each entry in the attribute vector sorted
unique data file is therefore implicitly numbered. The first entry in that file has offset number
0, the second string has entry number 1 and so on. This file MUST contain fields that

represent the entry number in the corresponding attribute vector sorted unique data file.

2.1.13.3 Index File

The path and file name of this file MUST be "PP\index_TTTT\index_data\merged\ATTVNAME.idx".

29 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

This file enables the query matching component to look up how many attribute vector information
fields each item has in the attribute vector sorted unique data file, as specified in section 2.1.13.5.

Attribute vectors that are single-valued always have one attribute vector information field for each
item. Attribute vectors that are multi-valued have one or more attribute vector information fields for

each item.

This file only exists for multi-valued attribute vectors. This file is used to calculate how many values
each item has and to look up the correct entries in the attribute vector entry index file.

This file contains 32-bit (4-byte) unsigned little-endian order fields that specify the entry number
into the attribute vector entry index file where the entries for each item begin.

There MUST be as many entries in this file as there are items in the index partition plus one extra
entry, which is the last one in this file. The first entry is "0", and the last extra entry contains a

value that is one number greater than the total number of entries in the attribute vector entry index
file.

The first entry in this file is for document identifier 0, the second entry is for document identifier 1,

and so on. The next to last entry in this file is the entry number for the highest numbered document
identifier.

The number of entries for an item is calculated by subtracting the entry number for the next

document identifier by the entry number of the actual document identifier. The last entry number
and the next last entry number in this file are used to calculate the number of attribute vector
information fields for the last document identifier. There MUST be zero or more entries per item.

Each entry in the attribute vector index file MUST follow this format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

attribute vector entry index file entry number

attribute vector entry index file entry number (4 bytes): The entry number in the attribute
vector entry index file for this document identifier. This file contains 32-bit (4 bytes) unsigned
little-endian order fields that represent the entry number in the corresponding attribute vector
entry index file. Each entry in the attribute vector entry index file is specified using 4 bytes.
The last entry in this file contains the total number of entries in the attribute vector entry
index file. Therefore the size in bytes of the attribute vector entry index file is 4 bytes

multiplied by the value of the last entry number in this file.

The entry numbers in this file increase by zero or more for each consecutive entry.

2.1.13.4 Information File

The path and file name of this file MUST be "PP\index_TTTT\index_data\merged\ATTVNAME.info".

This file specifies metadata about the attribute vector.

This file MUST exist for each ATTVNAME. All elements in this file are specified with ASCII characters.

The file is specified using the following ABNF grammar:

attrvector-info = datatype enum-bits enum-maxvalue

 enum-ramusage format multivalue

 [offset-bits offset-ramusage]

%5bMS-OFCGLOS%5d.pdf

30 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

 plain-ramusage [sortsigned]

datatype = "datatype" SP "=" SP ("string" / "int64" / "float") LF

enum-bits = "enum.bits" SP "=" SP "32" LF

enum-maxvalue = "enum.maxvalue" SP "=" SP 1*10DIGIT LF

enum-ramusage = "enum.ramusage" SP "=" SP 1*20DIGIT LF

format = "format" SP "=" SP "plain," ["offset,"] "enum" LF

multivalue = "multivalue" SP "=" SP ("yes" / "no") LF

offset-bits = "offset.bits" SP "=" SP "32" LF

offset-ramusage = "offset.ramusage" SP "=" SP 1*20DIGIT LF

plain-ramusage = "plain.ramusage" SP "=" SP 1*20DIGIT LF

sortsigned = "sortsigned" SP "=" SP ("yes" / "no") LF

Key Value description

datatype Specifies the internal data type of the attribute vector. This field is of type string, int64 or
float.

enum-bits Specifies the number of bits used for each entry in the attribute vector entry index file
(.eidx file), see section 2.1.13.2. This field MUST contain the value "32".

enum-
maxvalue

Specifies the highest numbered entry value in the .eidx file. This is the same as the
number of entries in the .sudat file.

enum-
ramusage

Specifies the estimated memory usage in bytes required to load the .eidx,.idx and .sudat
files into memory.

This MUST be calculated as specified in the following formula. Each size is represented in

bytes.

For numeric type:

enum-ramusage = size in bytes of .idx file + size in bytes of .eidx file +

size in bytes of .sudat file

For string type:

See the preceding entry in this table for the definition of the enum-maxvalue field.

enum-ramusage = size in bytes of .idx file plus size, in bytes, of .eidx file plus size, in
bytes, of .sudat file plus ((enum-maxvalue + 1) * 4 bytes)

format Specifies the file formats present for this attribute vector file set.

The format line MUST specify this setting as follows:

To "plain,offset,enum" for attribute vectors that have multiValue = "yes" and datatype

= "string".

To "plain,enum" for the attribute vectors that do not have the required settings for the

preceding format, which means that it does not have multiValue = "yes" and datatype
= "string". This means that if either multiValue is "no", or datatype contains "int64" or
"float", then the format MUST be set to "plain,enum".

See the "multivalue" and "datatype" setting descriptions in this table.

multivalue Specifies whether the attribute vector is multivalued. This setting is the same as the multi
attribute in the attributeVector element with the name set to ATTVNAME in the
indexconfig.xml file. It MUST be set to "yes" for multi-valued attribute vector, or it MUST
be set to "no" for single value attribute vectors. See [MS-FSSCFG] section 2.8.3.30 for
information about the multi setting.

offset-bits The number of bits represented by each offset field. This field MUST contain the value 32.

offset- Specifies the estimated memory usage in bytes for loading the .idx and .sudat file into

%5bMS-FSSCFG%5d.pdf

31 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Key Value description

ramusage memory.

This is only specified for attribute vectors of type string.

This field MUST be ignored by the query matching component.

This field is calculated as specified in the following formula:

offset-ramusage = size in bytes of .idx file + size in bytes of .sudat file

plain-
ramusage

Specifies the estimated memory usage in bytes for loading the .eidx,.idx and .dat files into
memory.

This is calculated as specified in the following formula.

For type string:

plain-ramusage = size in bytes of .idx file + size in bytes of .dat file + size of .eidx file

For type numeric:

plain-ramusage = size in bytes of .idx file + size in bytes of .dat file

sortsigned This setting only exists in the .info file for attribute vectors with data type int64. The
setting MUST contain the value of the signedValue attribute in the corresponding
attributeVector element in the indexConfig.xml file. See [MS-FSSCFG] section 2.8.3.30
for information about the signedValue setting.

2.1.13.5 Sorted Unique Data File

The path and file name of this file MUST be "PP\index_TTTT\index_data\merged\ATTVNAME.sudat".

This file contains only the unique attribute vector information elements from the attribute vector
data file. The elements are stored in sorted order. The query matching component loads the content
of this file into memory, and uses this information to calculate aggregated data sets.

This file contains the sorted and unique values extracted from the corresponding .dat file. The
values MUST be sorted in ascending order. String fields are sorted by the string of bytes that
represent the value, first by the first byte, then by second byte, and so on. Numeric type fields are

sorted by the entire multi-byte value that it represents.

Unique means that there are no entries with the same numeric value or string content. This unique
processing MUST be performed by the indexing component across all item fields, regardless of
whether the item contains multiple fields.

The format of each entry in this file is the same as the entry in the attribute vector data file, as
specified in section 2.1.13.1.

2.1.14 Property Context Catalog File

This section contains an overview of the files that are part of a full-text index context catalog.

2.1.14.1 Overview

2.1.14.1.1 Local Terminology

Token identifier: A 32-bit integer field that uniquely specifies a token in a context catalog. The

lowest token identifier value MUST be 0. The token identifier 0 MUST be the token with the lowest
alphabetical sort order. The next sort ordered token MUST be token identifier 1, and so on.

%5bMS-FSSCFG%5d.pdf

32 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Token position: The position of a token inside an item. When an item is a collection of tokens, for
example the phrase "Here you are", the first position is token position 0, the token position of

"Here" is 0, the token position of "you" is 1, and the token position of "are" is 2.

Token ordinal number: Specifies the token identifier value relative to the first token identifier for

the file page. Dictionary files in an index partition are divided into file pages, each of which contains
attributes for a subset of the token entries in the index partition. The token identifiers of the tokens
in one file page are a continuous number range, for example all the integers from 100 to 120. The
token ordinal number for a token in the page is calculated by subtracting the first token identifier
on the page from the specified token identifier. The first token on the page contains token ordinal
number 1, the next token contains the token ordinal number 2, and so on.

2.1.14.1.2 Index Configuration

Managed properties of type text contain content that is indexed into text based context catalog files.

The index.cf configuration file uses the catalogtype setting to specify which context catalogs MUST
exist in the index, as specified in [MS-FSSCFG]. For each context catalog of catalogtype text or

textsynthetic, a separate set of context catalog files MUST be generated.

There is one set of dictionary files for each context catalog of catalogtype text or textsynthetic.

The dictionary files contain all the words found in all the documents in the properties belonging to
the context catalog. In addition to the words themselves the dictionary files contain lookup
information to the different index files in the property indexes.

The dictionary data files are logically divided into file pages. Each file page specifies properties for a
subset of the tokens. Each file page for a file has the same structure, only the tokens within each
file page differ. A corresponding dictionary index file is used to determine the file page that specifies
properties for a specific token. The dictionary index file specifies where each file page begins. The

end of one file page is the beginning of next file page minus one byte.

For each context catalog, the set of property contexts included in a property index is specified
by the contains setting for the context catalog, as specified in [MS-FSSCFG] section 2.9.2.1.

Each property index MUST have a separate set of index files, stored in a sub-directory of the context
catalog directory. The context catalogs with catalogtype text can have multiple property index sub-
directories with separate index files. The context catalogs with catalogtype set to textsynthetic
have only one sub-directory with index files. The files that represent a property index are prefixed

with "boolocc" or "posocc".

A context catalog of catalogtype text can have p different property indexes, but at most 8. The
property index order number is a number between 1 and p. The mapping of property index order
number to property index is specified in the contexts keyword in the index.cf file, see [MS-FSSCFG]
section 2.9.2.1.

In the following sections, the dictionary files that are part of a context catalog file set are stored in a

path that contains the textcatalogname variable. The occurrence files are stored in a subdirectory of
the textcatalogname directory. This subdirectory is referred to in the paths with the textsubindex
variable. For each context catalog file set, the textcatalogname variable MUST be replaced with the
context catalog name, as specified in the catalog-def setting in [MS-FSSCFG] section 2.9.2.1. For

each property index in a context catalog, the textsubindex variable MUST be replaced with the
property index name, as specified in the index setting in [MS-FSSCFG] section 2.9.2.1.

The query matching component uses the context catalog files to find the items that contain the text

token specified in the query.

%5bMS-OFCGLOS%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-OFCGLOS%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf

33 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.14.1.3 Context Catalog Files

The context catalog files are related to each other as specified in the following figure.

Figure 4: Relationships between context catalog files

2.1.14.1.4 Binary Data Fields

Binary data fields represent information in many fulltext-index catalog files. In a binary data field,
the logical unit is the single bit, that is, the logical bit position. This abstraction of how information is

represented on disk simplifies the specification of fields. The structures in binary data fields are
specified by the logical bit position. Physically, on a disk, the bits are grouped together as unsigned
integers named binary data bulks, therefore there is a corresponding physical representation of the
bit position. This is represented by two numbers, the binary data bulk number (i) and the bit
number within that binary data bulk (b), where b=0 corresponds to least significant bit. The first
binary bulk is assigned i=0. The logical position of a bit is specified by one integer only, (l), the first

34 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

logical position is specified by l=0. Because the structures that use binary data fields are specified
using logical bit position, the implementer of a protocol MUST use the following mappings:

l -> (i,b) and (i,b) -> l

Those mappings are used to read and write the information to disk, in addition to using the

structures specified in the following sections. This mapping is shown in the following two tables. The
first table specifies the layout of the unsigned integers that contain the bits and the second table
specifies the mapping between logical position and physical representation. This is specified in the
following formula:

l = 32i + 31 - b

As a consequence of this structure, in general there will be unused bits at the end of a binary data

field.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Binary data bulk 0

Binary data bulk 1

...

Last binary data bulk

The following table specifies the mapping between logical position and physical representation.

Logical order (l) Binary data bulk number on file (i) Bit number inside binary data bulk (b)

0 0 31

1 0 30

… … …

31 0 0

32 1 31

33 1 30

… … …

63 1 0

64 2 31

… … ….

35 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.14.1.4.1 Common Algorithms for Decoding Binary Encoded Fields

The common binary encoding schemes used across the different binary data fields are specified in
the following subsections.

2.1.14.1.4.2 NextBit Subroutine

This subroutine returns the value of the current bit and steps to next logical bit position in the
binary data field.

2.1.14.1.4.3 ONES Subroutine

This subroutine returns the number of consecutive bits that are set to 1 (true).

The following is the algorithm for this subroutine:

CALL NextBit returns bit

SET count = 0

WHILE bit

 count = count + 1 ; number of consecutive bits that are set

 CALL NextBit returns bit

END WHILE

2.1.14.1.4.4 ReadN Subroutine

This subroutine accepts one parameter, the unsigned integer n. It reads n bits and calculates the "n
bit unsigned integer" value.

Example: ReadN(2) on the bit sequence "11" (0x3) returns the bitstring "11" (0x3), while
ReadN(1) on the same bit sequence returns the bitstring "1" (0x1).

The following is the algorithm for this subroutine:

SET value = 0 ; value is the returned value

FOR i = 0 :i<= n - 1

 CALL NextBit returns bit

 IF bit is set THEN

 SET value = value + 2^(n-1-i)

 END IF

END FOR

2.1.14.1.4.5 RICE-S Decoding Subroutine

The subroutine accepts one input parameter, the unsigned integer K. At the end of processing the

decoded value MUST be present in the unsigned integer rice. This is returned to the calling
application.

The following is the algorithm for this subroutine:

CALL ONES returns e ; unary coding of e

CALL ReadN with e returns g

CALL ReadN with K returns s

SET rice = (2^e + g - 1) *(2^K) + s ; the decoded value

36 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.14.1.4.6 Decode32 Decoding Subroutine

This subroutine accepts no parameters. At the end of processing the value decoded MUST be
present in the unsigned integer value. This value is returned to the calling application.

The following is the algorithm for this subroutine:

CALL ReadN with n=3 returns numberOfNibbles

CALL ReadN with n=numberOfNibbles*4 + 4 returns value

2.1.14.1.4.7 RICE-C Decoding Subroutine

This is a variant of the preceding decoding subroutine. This subroutine accepts two parameters,

unsigned integer K and unsigned integer Max. At the end of processing the decoded value MUST be
present in the unsigned integer value. This value is returned to the calling application.

The following is the algorithm for this subroutine:

CALL RICE-S with K returns value

IF value equals 0 THEN

 CALL DECODE32 returns value

 SET value = value + Max

END IF

SET value = value - 1

2.1.14.1.4.8 RICE-D Decoding Subroutine

This is another variant of decoding an unsigned integer. This subroutine accepts two parameters,
the unsigned integer K and unsigned integer Max. At the end of processing the decoded value MUST
be present in the unsigned integer value. This value is returned to the calling application.

The following is the algorithm for this subroutine:

CALL NextBit returns bit

IF NOT bit THEN

 SET value to 0

ELSE

 CALL NextBit returns bit

 IF not bit THEN

 SET value to 1

 ELSE

 CALL RICE-C with K,Max returns value

 SET value = value + 2

 END IF

END IF

2.1.14.1.4.9 RICE-D0 Decoding Subroutine

This is another variant of the decoding, as specified in section 2.1.14.1.4.8. This subroutine accepts
two parameters, the unsigned integers K and unsigned integer Max. At the end of processing the
decoded value MUST be present in the unsigned integer value. This value is returned to the calling
application.

The following is the algorithm for this subroutine:

37 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

CALL NextBit returns bit

IF NOT bit THEN

 SET value to 0

ELSE

 CALL RICE-C with K,Max returns value

 SET value = value + 1

END IF

2.1.14.1.4.10 RICE-BOOL Decoding Subroutine

This is another variant of decoding an unsigned integer. This subroutine accepts one parameter,
unsigned integer K. At end of processing the decoded value MUST be present in the unsigned
integer value. This value is returned to the calling application.

The following is the algorithm for this subroutine:

CALL RICE-S with K returns value

IF value equals 0 THEN

 CALL ReadN with n = 32 returns value

END IF

SET value = value - 1

2.1.14.1.4.11 RICE-2 Decoding Subroutine

This is another variant of decoding an unsigned integer. This subroutine accepts three parameters,
the unsigned integers K, Max and n. At the end of processing, the decoded value MUST be present
in the unsigned integer value. This value is returned to the calling application.

The following is the algorithm for this subroutine:

CALL RICE-S with K returns value

IF value is 0 THEN

 ReadN with n returns numberOfNibbles

 CALL ReadN with numberOfNibbles*4+4 returns value

END IF

SET value = value - 1

2.1.14.1.4.12 DECODE64-D0 Subroutine

This is a subroutine for decoding an unsigned integer. This subroutine accepts no parameters. At the

end of processing, the decoded value MUST be present in variable value. This value is returned to
the calling application.

The following is the algorithm for this subroutine:

IF NOT NextBit THEN

 SET value to 0

ELSE

 CALL ReadN with n=4 returns numberOfNibbles

 CALL ReadN with numberOfNibbles*4+4 returns value

END IF

38 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.14.1.4.13 DECODE64-D Subroutine

This is a subroutine for decoding an unsigned integer. This subroutine accepts no parameters. When
processing is finished the decoded value MUST be present in the unsigned integer value. This value

is returned to the calling application.

The following is the algorithm for this subroutine:

IF NOT NextBit THEN

 SET value to 0

ELSE

 IF NOT NextBit THEN

 SET value to 1

 ELSE

 CALL ReadN with n=4 returns numberOfNibbles

 CALL ReadN with numberOfNibbles*4+4 returns value

 END IF

END IF

2.1.14.2 Boolean Occurrences

This set of files specifies information that is associated with Boolean occurrences of tokens in items.

A Boolean occurrence is a structure that stores information about which items contain a specific
token. The files are the bit-vector data file, the bit-vector index file, the file that contains the counts
of compressed occurrences, the data compressed sizes file, and the binary data file, as specified in
the following sections.

2.1.14.2.1 Bit-vector Data File

Path and file name of this file MUST be

"PP\index_TTTT\index_data\merged\textcatalogname\textsubindex\boolocc.bdat".

This file enables the query matching component to determine which document identifiers exist for a

token identifier.

This file contains the bit vectors for a subset of tokens represented in the dictionary. The Boolean
occurrences bit vector index file contains token identifiers for the tokens in this file, as specified in
section 2.1.14.2.2.

The format of this file MUST be specified using the following ABNF grammar:

file = *(bit-vector)

bit-vector = 1*(%x00-ffff)

file: The file consists of n number of bit-vector fields, where n equals the number of bit vector

entries in the Boolean occurrences bit vector index file, as specified in section 2.1.14.2.2. Each
bit vector represents a token.

bit-vector (variable): A sequence of unsigned integers, that is, 32 bits little-endian. Each bit

represents a document identifier. Bit 0 is for document identifier 0, the first item in the index.
Bit 1 is for the second item in the index and so on. Bit number 0 MUST be the lowest or
rightmost bit in the first unsigned 32-bit integer. Bit number 1 is the next lowest bit in the
first unsigned integer. Bit number 32 is the lowest bit in the second unsigned integer, and so
on.

39 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

When a bit is set, the current token MUST exist in the bit that represents the item. Each bit
vector contains at least as many bits as there are items in the index. The number of bits

MUST be rounded up so the total number of bits is aligned on the 32-bit length by using
padding. The bits not belonging to the actual document identifier MUST be set to zero and

MUST be ignored.

2.1.14.2.2 Bit-vector Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\textsubindex\boolocc.bidx".

This file enables the query matching component to determine the offset at which to begin reading
the Boolean occurrences bit-vector data file to retrieve the bit-vector for the specified token

identifier.

This file contains token identifiers that reference the bit vectors in the bit-vector data file, as
specified in section 2.1.14.2.1. The query matching component locates the token identifier for the
specified token in this index file to read a bit vector for a specific token. The count number of the

entry is associated with the token identifier. The first token identifier in the index file has count
number 0, the next has count number 1, and so on. The offset in number of bytes into the Boolean

occurrences bit vector data file is the count number multiplied by the size of the bit vector, as
specified in section 2.1.14.2.1. This is shown in the following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

total number of items

number of entries

bit vector index (variable)

...

total number of items (4 bytes): This is the number of items in the index partition. It is
specified as an unsigned 32-bit integer field in little-endian order.

number of entries (4 bytes): This is the number of bit vector index entries following this field.
It is specified as an unsigned 32-bit field in little-endian order.

bit vector index (variable): This field consists of as many bit vector index entries as there are

bit vectors in the Boolean occurrences bit vector data file, as specified in section 2.1.14.2. A
bit vector index entry is specified in the following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

token identifier

number of items

40 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

token identifier(4 bytes): This is the token identifier for the token, which bit vector MUST be
present in the Boolean occurrences bit vector data file, as specified in section 2.1.14.2.1. It is

an unsigned 32-bit integer field in little-endian order.

number of items (4 bytes): This is the number of bits set to 1 in the bit vector data file for the

current bit vector entry. This value represents the number of items that contains the token. It
is an unsigned 32-bit integer field in little-endian order.

2.1.14.2.3 Compressed Occurrence Counts File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\textsubindex\boolocc.ccnt".

This file enables the query matching component to determine for each token how many items

contain the token.

The 4-byte fields in the header of this file are unsigned 32-bit integer values in little-endian order.
The file is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header Version

header Version Length

occurrences

compression method

K

max

binary data field (variable)

...

header Version (4 bytes): The header version for this file. This field MUST contain the value 1.

header Version Length (4 bytes): The header version length for this file. This field MUST
contain the value 16.

occurrences (4 bytes): The number of count numbers that are encoded in the binary data field
in this file.

compression method (4 bytes): This specifies the encoding algorithm used on the count
numbers encoded in the binary data field. This field MUST contain the value 8.

K (4 bytes): A compression parameter. This field MUST contain the value 2.

max (4 bytes): A compression parameter. This field MUST contain the value 1020.

41 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

binary data field (variable): This represents a binary data field, as specified in section
2.1.14.1.4. This field contains one or more entries representing an encoded count value for

each token. The tokens are sorted by the token identifier, beginning with token identifier 0.
The decoded value is the number of items in which the token exists. Each count value is

decoded as specified in the following algorithm.

CALL RICE-D with k=2, Max=1020 returns count

2.1.14.2.4 Data Compressed Sizes File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\textsubindex\boolocc.dat.ccnt".

This file contains for each token, the size of the region in the Boolean occurrences data file, which is
used to described occurrences for each token, given in number of bits.

The value for a given token MUST equal to the number of bits consumed by the algorithm, as

specified in section 2.1.14.2.5.1, the inner loop.

The 4-byte fields in the header of this file are unsigned 32-bit integers in little-endian order.

The file is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header Version

header Version Length

occurrences

compression method

K

max

binary data field (variable)

...

header Version (4 bytes): The header version for this file. This field contains the value 1.

header Version Length (4 bytes): The header version length for this file. This field MUST

contain the value 16.

occurrences(4 bytes): The number count numbers in this file. This number is the number of
count numbers that are encoded in the binary data field.

42 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

compression method (4 bytes): A field that specifies the encoding algorithm used on the
count numbers encoded in the binary data field. This field MUST contain the value 7.

K (4 bytes): A compression parameter. This field MUST contain the value 7.

max (4 bytes): A compression parameter. This field MUST contain the value 524160.

binary data field (variable): This is a binary data field, as specified in section 2.1.14.1.4. This
field MUST contain a count value for each token. The count value MUST be sorted by token
identifier, beginning with token identifier 0. Each count value is the number of bits used to
store the token-identifier entry for this token, as specified in section 2.1.14.2.5.1. Each count
value is decoded using the following algorithm:

CALL RICE-D0 with k=7, Max=524160 returns count

2.1.14.2.5 Binary Data File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\textsubindex\boolocc.dat.compressed".

This file enables the query matching component to determine which document identifiers contain a

token. Along with each document identifier there MUST also be associated information that the
query matching component uses to calculate the dynamic rank. This is shown in the following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header Version

header Length

binary data field (variable)

...

header Version (4 bytes): This field specifies the header version for this file. This field MUST
contain the value 1 as an unsigned 32-bit field in little-endian order.

header Length (4 bytes): This field specifies the header version length for this file. This field
MUST contain the value 0 as an unsigned 32-bit field in little-endian order.

binary data field (variable): See section 2.1.14.2.5.1.

2.1.14.2.5.1 Binary Data Field

This field specifies which document identifiers contain a token. Along with each document identifier

entry, additional information MUST also be present, as specified in the contextMapBoost,
extNumOccBoost, firstOccBoost and numOccBoost fields.

For a general description of a binary data field, see section 2.1.14.1.4. For an example of how to

decode the values from this type of file, see the Boolean occurrences binary data file in section 3.7.

The information in this field MUST be as specified in this section.

43 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

In the following algorithm, the number-of-tokens-in-the-dictionary-paged-data-file parameter MUST
be equal to the token count field in the dictionary paged data file (section 2.1.14.4.3). The

number-of-items-where-tokenId-is-present parameter is located in the Boolean occurrences
compressed occurrences counts file, in the binary field of the current tokenId field. How to retrieve

an item count value for a specified token identifier is specified in section 2.1.14.4.1.

FOR tokenId = 1 : tokenId <= number-of-tokens-in-the-dictionary-paged-data-file

 SET previousDocId = 0

 FOR occNumber = 1 : tokenId <= number-of-items-where-tokenId-is-present

 CALL ReadN with n=4 returns flags

 CALL NextBit returns newEntry

 IF flags bit 1 is set THEN ; bit 1 is the leftmost bit in flags

 CALL ReadN with 8 returns contextmapBoost[tokenId][occNumber]

 ELSE

 contextmapBoost[tokenId][occNumber] = contextmapBoost[tokenId][occNumber-1]

 END IF

 IF flags bit 2 is set THEN

 CALL ReadN with 8 returns extNumOccsBoost[tokenId][occNumber]

 ELSE

 extNumOccsBoost[tokenId][occNumber]= extNumOccsBoost[tokenId][occNumber-1]

 END IF

 IF flags bit 3 is set THEN

 CALL ReadN with 8 returns firstOccBoost[tokenId][occNumber]

 ELSE

 firstOccBoost[tokenId][occNumber]= firstOccBoost[tokenId][occNumber-1]

 END IF

 IF flags bit 4 is set THEN

 CALL ReadN with 8 returns numOccBoost[tokenId][occNumber]

 ELSE

 numOccBoost[tokenId][occNumber]= numOccBoost[tokenId][occNumber-1]

 END IF

 CALL RICE-BOOL with 6 returns rice

 IF newEntry THEN

 ; rice represent the item number

 SET docId[tokenId][occNumber] = rice

 ELSE

 ; rice represents the difference from previous item number decoded

 SET docId[tokenId][occNumber] = previousDocId + rice

 END IF SET previousDocId = docId[tokenId][occNumber] END FOR

END FOR

Flags (4 bits): This field contains four bits that represent four Boolean flags. The first bit, or

leftmost bit, is bit 1. If bit 1 is set, then the contextMapBoost field MUST be present. If bit 2
is set, then the extNumOccBoost field MUST be present. If bit 3 is set, then the
firstOccBoost field MUST be present. If bit 4 is set, then the numOccBoost field MUST be
present.

newEntry (1 bit): A flag that is used when decoding the rest of the values. This field MUST be
set to TRUE (1) if the current item-entry is the first for the current token-identifier-entry.

contextMapBoost (integer array): This is an 8-bit unsigned field that specifies the property
context instances that contain the specified token in the current item. For example, let n be a
number between 0 and 7. Then if bit n is set, the token is located in property context
numbered n. For the element named contextMapBoost[i][j], the subscript i is between 1 and
number-of-tokens in the dictionary paged data file. The subscript j is between 1 and number–
of-items containing the token identifier j. The two maximum numbers for i and j are located in
the dictionary paged data file.

44 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

extNumOccsBoost (integer array): This specifies how many times the current token exists
inside an external context. If token exists more than 255 times in an external context, this

value is set to 255. For example, the element extNumOccsBoost[i][j] has a subscript i that
is between 1 and the number of tokens in the dictionary paged data file. The subscript j is

between 1 and the number of items containing the token specified by token identifier i. The
two subscripts use the token and the items associated with the token to locate the occurrence
count within the extNumOccsBoost array. The maximum values for i and j are located in the
dictionary paged data file.

firstOccBoost (integer array): This two-dimensional array contains the position of the first
occurrence of this token for the current item. If value is greater than 255, this value is set to
255. For example, the element firstOccBoost[i][j] has a subscript i that is between 1 and the

number of tokens in the dictionary paged data file. The subscript j MUST contain a value
between 1 and the number of items that contain the token specified by token identifier i. The
maximum values for i and j are located in the dictionary paged data file.

numOccBoost (integer array): This two-dimensional array contains the number of occurrences
the token was located in the current item. If this exceeds 255, then it MUST be set to 255. For

example, the element numOccBoost[i][j] has a subscript i that is between 1 and the number

of tokens in the dictionary paged data file. The subscript j MUST contain a value between 1
and the number of items that contain the token specified by token identifier i. The maximum
values for i and j are located in the dictionary paged data file.

rice (4 bytes): If the newEntry field is true, this field MUST be set to the current item
identifier. If the newEntry field is false, this field MUST contain the difference between the
current document identifier and the previous document identifier. For each token entry, the
previousDocId field MUST contain the document identifier of the previous item entry.

docId: For docId[tokenId][occNumber], the occNumber field specifies for which occurrence

number this document identifier entry is. For Boolean occurrences, there MUST be only one

occurrence per item. The tokenId field specifies the token identifier that is associated with
this document identifier entry. The document identifier at each tokenID and occNumber
position MUST specify the document identifier that contains tokenId.

2.1.14.3 Position Occurrences Files

This section specifies the position occurrences files. A position occurrence is a structure that stores
information about the location of each token in an indexed item. These files contain components

that are similar but not identical to the Boolean occurrences files. The position occurrence files are
the compressed sizes file, the compressed occurrence counts file, and the binary data file, as
specified in the following sections.

2.1.14.3.1 Compressed Sizes File

The path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\textsubindex\posocc.ccnt".

This file enables the query matching component to determine how many bits each position data
section uses for each token identifier in the position occurrences binary data file.

The 4-byte fields in the header of this file are unsigned 32-bit integers. The file MUST be specified as
follows.

45 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header Version

header Version Length

occurrences

compression method

K

max

binary data field (variable)

...

header Version (4 bytes): The header version for this file. This field MUST contain the value 1.

header Version Length (4 bytes): The header version length for this file. This field MUST
contain the value 16.

occurrences(4 bytes): The number of count numbers in this file, which is the same as the

number of count numbers that are encoded in the binary data field.

compression method (4 bytes): A field that specifies the encoding algorithm used on the
count numbers encoded in the binary data field. This field MUST contain the value 12.

K (4 bytes): A compression parameter. This field MUST contain the value 6.

max (4 bytes): A compression parameter. This field MUST contain the value 524160.

binary data field (variable): This represents a binary data field, (section 2.1.14.1.4). This field
MUST contain the count value for each token. The count value for the token is sorted by token

identifier, beginning with token identifier 0. One count MUST equal the length of the section of
posocc.data.compressed file that specifies the positions for current token identifier. Each count
value is decoded using the following algorithm:

CALL RICE-D0 with k=6, Max=524160 returns count

2.1.14.3.2 Compressed Occurrence Counts File

Path and file name of this file MUST be

"PP\index_TTTT\index_data\merged\textcatalogname\textsubindex\posocc.counts.ccnt".

This file contains the number of occurrences for each token identifier.

The 4-byte fields in the header of this file are unsigned 32-bit integers in little-endian order. The file
MUST be as specified in the following table.

46 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header Version

header Version Length

occurrences

compression method

K

max

binary data field (variable)

...

header Version (4 bytes): The header version for this file. This field MUST contain the value 1.

header Version Length (4 bytes): The header version length for this file. This field MUST
contain the value 16.

occurrences (4 bytes): The number of count numbers in this file. This is the number of count

numbers that are encoded in the binary data fields.

compression method (4 bytes): A field that specifies the encoding algorithm used on the
count numbers encoded in the binary data fields. This field MUST contain the value 8.

K (4 bytes): A compression parameter. This field MUST contain the value 2.

max (4 bytes): A compression parameter. This field MUST contain the value 1020.

binary data field (variable): This represents a binary data field (section 2.1.14.1.4). This field
contains a count value for each token. This value is sorted by the token identifier, beginning

with token identifier 0. One count value MUST equal the number of total number of
occurrences of the token. Each value is decoded as specified in the following algorithm:

CALL RICE-D with k=2, Max=1020 returns count

2.1.14.3.3 Binary Data File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\textsubindex\posocc.dat.compressed".

This file enables the query matching component to determine which positions are associated with a
token identifier for each document identifier. Information about the property index in which the
token was included is associated with each position.

47 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

How to find the offset into this file for a specific token is specified in the dictionary paged data file in
section 2.1.14.4.3.

The 4-byte fields in the header of this file are unsigned 32-bit integers in little-endian order. The file
MUST be specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

header Version

header Version Length

MCC

binary data field (variable)

...

header Version (4 bytes): The header version for this file. This field MUST be set to 1. It is
specified as an unsigned 32-bit integer field in little-endian order.

header Version Length (4 bytes): The length of the header version for this file. This is

specified as a 32-bit unsigned integer field in little-endian order. The field MUST be set to 4.

MCC (4 bytes): This field MUST be ignored.

binary data field (variable): See section 2.1.14.3.3.1.

2.1.14.3.3.1 Binary Data Field

This represents a binary data field, as specified in section 2.1.14.1.4. For each token, the field MUST
contain a list of items. For each item, the field contains the position entries inside that item. For an

item, there are one or more tokens at each position. The first token(s) in the item has position 0;
the second token(s) has position 1, and so on. A position entry specifies a token position in the
item. The context value MUST also be determined for each position entry. If there is no context
value specified directly for a position entry, the context value MUST be computed by using the
context value from a previous position entry for the same item that specified a context value. The
context value of the current position entry MUST be set to the same value as the context value of
the previous entry.

Assume that there are n tokens in the dictionary. Then the binary data field is decoded as specified
by the following algorithm. See the dictionary paged index file section 2.1.14.4.4 for how to find n.

; Loop over all the tokens in the dictionary

FOR tokenNr = 1 : tokenNr <= n ; First document id

 SET docIdx = 1 ; An index integer for document ids for a token

 CALL RICE-BOOL with K=22 returns docId[tokenNr][docIdx]

 REPEAT ; A REPEAT-UNTIL loop over the document ids

 SET posIdx = 1 ; First position index number

 ; First position value

 CALL RICE-BOOL with K=8 returns position[tokenNr][docIdx][posIdx]

 CALL NextBit returns contextPresent

48 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

 IF contextPresent THEN

 CALL ReadN with n = 3 returns context[tokenNr][docIdx][posIdx]

 END IF

 CALL NextBit returns posEntryPresent

 WHILE posEntryPresent ; while loop over positions

 SET posIdx = posIdx + 1

 CALL RICE-BOOL with K=4 returns diffPosition

 SET position[tokenNr][docIdx][posIdx] = \

 position[tokenNr][docIdx][posIdx-1]+1+diffPosition

 CALL NextBit returns contextPresent

 ; If context present read it

 ; if not present, use previous

 IF contextPresent THEN

 CALL ReadN with n = 3 returns context[tokenNr][docIdx][posIdx]

 ELSE

 SET context[tokenNr][docIdx][posIdx] = \

 context[tokenNr][docIdx][posIdx-1]

 END IF

 CALL NextBit returns posEntryPresent

 END WHILE ; end loop over positions

 CALL NextBit returns nextDocIDPresent

 IF nextDocIDPresent THEN

 CALL RICE-BOOL with K=7 returns diffDocIdEntry

 SET docIdx += 1

 SET docid[tokenNr][docIdx] = \

 diffDocIdEntry + 1 + docid[tokenNr][docIdx]

 END IF

 UNTIL nextDocIDPresent ; end of REPEAT-UNTIL loop over document ids

END FOR ; end for loop over tokens

docid (integer array): After processing, this two-dimensional array contains all the document

identifiers present in current context index. For example, in the element docid[i][j]. The

index variable i is the token identifier. The index variable j is an item index that begins at 1
and increases for each new item encountered for the current token in the file. The
docid[tokenId] array contains all the document identifiers for token identifier tokenId. Each

decoded document identifier is an unsigned 32-bit field in little-endian order.

position (integer array): After processing each document identifier present in the current
context index, this field contains all the positions for the current token. In the element
position[i][j], the index variable i is the token identifier. The index variable j is a

document identifier index that begins at 1 and increases for each new document identifier
encountered for the current token in the file. The elements in position[tokenId][docIdx][]

contain all the positions for token where token identifier is equal to tokenId in the item with
document identifier docid[tokenId][docIdx]. Each decoded position is an unsigned 32-

bit field in little-endian order.

context (integer array): After processing each document identifier present in current context
index, this field contains all the full-text context indexes for the current token. The array
element context[tokenId][docIdx][] contains all the full-text context indexes for the token

which token identifier is equal to tokenId in the item with document identifier

docid[tokenId][docIdx]. Each decoded context value is an unsigned 32-bit field in little-

endian order.

49 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.14.4 Dictionary Files

This section specifies the dictionary files. Dictionary files contain information about tokens in
addition to the occurrences of tokens within items. The dictionary files contain all the words found in

all the documents associated with the properties in the context catalog. The dictionary files are the
paged count data file, the paged count index file, the paged data file, paged index file, sorted hash
file, token number count index file, the token number index file, and the warmup file, as specified in
the following sections.

2.1.14.4.1 Paged Count Data File

Path and file name of this file MUST be

"PP\index_TTTT\index_data\merged\textcatalogname\dictionary.pcdat".

This file enables the query matching component to look up occurrence information for a token. The
information contains item occurrence and token occurrence information.

The following variables are used for the purposes of this specification as placeholder names for the

various types of summations that occur while managing search application indexes:

item-occurrence-number: Specifies how many items contain the current token.

item-occurrence-accumulated-number: Specifies the sum of the item-occurrence
numbers, over all the tokens from token identifier zero up to and including the current token
identifier.

token-occurrence-number: Specifies how many times a token occurs in all the indexed items.

token-occurrence-accumulated-number: Specifies the sum of the token-occurrence
numbers, over all the tokens from token identifier zero up to and including the current token
identifier.

This file contains file pages that are identically structured. Each file page contains token-
occurrence-accumulated-number tokens and item-occurrence-accumulated-number

tokens or a subset of all the tokens. How to locate the file page that contains information for a
specified token is specified in section 2.1.14.4.3. Let n be assigned to be the number of
property indexes and the constant K=(number-tokens)-1, where number-tokens are

number of tokens described in the current page.

The page is specified using the following ABNF grammar. The UTF-8 string ABNF in section
2.1.1.2.1 MUST be added to this file ABNF on a new line before the word-"string rule" to
complete it.

page = accumulated-numbers-before accumulated-numbers-last

 number-tokens first-wordid diff-accumulated-numbers

 acc-word-lengths word-strings

accumulated-numbers-before = 1*context-property-numbers

accumulated-numbers-last = 1*context-property-numbers

context-property-numbers = token-accumulated-number item-accumulated-number

token-accumulated-number = 8OCTET

item-accumulated-number = 8OCTET

number-tokens = 4OCTET

first-wordid = 4OCTET

diff-accumulated-numbers = *diff-contexts

diff-contexts = *diff-token-numbers

diff-token-numbers = diff-token-accumulated-number

 diff-item-accumulated-number

50 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

diff-token-accumulated-number = 4OCTET

diff-item-accumulated-number = 4OCTET

acc-word-lengths = *acc-word-length

acc-word-length = 2*OCTET

word-strings = *word-string

word-string = UTF8-string %x00

accumulated-numbers-before: This contains n occurrences of context-property-numbers, one

for each property index. The context-property-numbers MUST be valid for the first token
identifier at current page. The n instances of context-property-numbers are ordered by the
property index ordering number.

accumulated-numbers-last: This contains n occurrences of context-property-numbers, one for

each property index. The occurrences MUST be ordered by the property index ordering
number. The context-property-numbers MUST be valid for the first token identifier at the next
page. If the context property number is the last word in the dictionary, then the token
identifier contains 16 bytes which MUST be ignored. This is because the accumulated count

numbers are specified as up to, but not including the current token.

token-accumulated-number: This contains the token occurrence accumulated number for the
current token and for the current property index.

item-accumulated-number: This number MUST contain the item occurrence accumulated
number for the current token and for the current property index.

diff-accumulated-numbers: This field MUST contain K-1 occurrences of diff-token-numbers.
The first occurrence of diff-contexts contains information about the token with token ordinal
number 1, the next occurrence of diff-contexts contains information about the token with
token ordinal number 2, and so on until the last token on the page.

number-tokens: This MUST be the number of tokens contained in this file page, as specified in

section 2.1.14.4.3.

first-wordid: This is the token identifier.

diff-contexts: This field MUST contain n occurrences of the diff-token-numbers field sorted by
the property index ordering number.

diff-token-accumulated-number: This MUST contain the token-occurrence-accumulated-
number for current token minus token-occurrence-accumulated-number for the token with

token ordinal number 1 and the same property index.

diff-item-accumulated-number: This MUST contain the item-occurrence-accumulated-number
for the current token minus item occurrence accumulated number for token with token ordinal
number 1 and the same property index.

acc-word-lengths: This rule MUST expand to the number of tokens on the page – 1. The first
item is for the first token, the second item is for the second token, and so on. The last token
on the page has no entry.

acc-word-length: The accumulated length of strings on this page.

word-strings: This rule MUST expand to the number of tokens on the page, one for each token.

word-string: A null terminated UTF-8 string that represents a token entry.

51 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.14.4.2 Paged Count Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\dictionary.pcidx".

This file enables the query matching component to locate the file page for a specific token in the
dictionary.pcdat file.

The file MUST contain n number of tokens in alphabetical order. The tokens represent a subset of all
the tokens found in the dictionary paged data file, see section 2.1.14.4.3. This file is used to find the
file page in the dictionary paged data file (section 2.1.14.4.3) where the information for a token is
stored. The corresponding file page in the dictionary paged data file MUST contain all the entries for
the token identifiers in the range r to s-1, where r and s represent two consecutive tokens in this

file, the dictionary paged count index file. The size of one file page is 4096 bytes.

The algorithm for finding the corresponding file page for a specified token is specified as follows.

The first token in the dictionary paged count index file is for file page 0, the next token in the index

file is for file page 1, and so on. Using the searched for token, scan through this file and find the last
token in this file that occurs before or is the same as the sought token in alphabetical order, and
note its number. This number is the file page number for the requested token. The following is an

example:

Let the index contain the tokens "alpha, gamma, upsilon" assigned the numbers 0,1 and 2. The
token to search for is "roma". Because the dictionary is in alphabetical order, the last token in the
dictionary before "roma" is "gamma". The assigned number to "gamma" is 1, and therefore the file
page number for "roma" is 1.

The ABNF grammar for this file, assuming there are a total of p pages, is specified as follows:

file = 1*token

token = UTF8-string %x00

file: The file MUST consist of p number of tokens.

token: The string content of the token. The token MUST consist of UTF-8 characters, delimited
by the ASCII character 0x00.

2.1.14.4.3 Paged Data File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\dictionary.pdat2".

This file enables the query matching component to determine what tokens are available, in how
many items the token occurred, how many total token occurrences were counted over all the items,
and where the item occurrence information for each token is stored in the Boolean occurrence files
and the position occurrence files.

There is one dictionary file set for each context catalog, as specified in catalog-def field in the

index.cf file.

This file consists of a number of file pages, in consecutive order. File page number 0 is first, then file
page 1, and so on. The size of one file page is 4096 bytes. Each file page, except the last page,
contains information about 512 consecutive tokens in the dictionary.shash, see section 2.1.14.4.5.
In the following assume that the file page number is g, where g is a non-negative integer. This file

52 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

page contains information about tokens that have token identifiers first=512*g to last=

512*(g+1)-1.

Each file page in this file is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

first token identifier

first token offset

token count sparse size

between size void

sparse binary data field (variable)

...

between binary data field (variable)

...

token offsets (variable)

...

LCP entries (variable)

...

first token identifier (4 bytes): This is an integer that contains the token identifier for the first
token specified for this file page. This token identifier MUST belong to the corresponding
lookup token in the dictionary paged index file, as specified in section 2.1.14.4.4.

first token offset (4 bytes): This field MUST be ignored.

token count (2 bytes): This integer MUST be the number of tokens contained in this file page.

sparse size (2 bytes): This integer specifies the length of the sparse binary data field, in units

of 4-byte integers. Therefore, the length of the sparse binary field in bytes MUST be this value
multiplied by 4.

between size (2 bytes): This integer specifies the length of the between binary data field
field in 4-byte integers. Therefore, the length of the between binary field field in units of
bytes is this value multiplied by 4. The size of the padding region field after the between
binary data field field MUST be included in this between size field.

void (2 bytes): This field MUST be ignored.

53 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

sparse binary data field (variable): Contains binary encoded information about tokens. This is
specified in section 2.1.14.4.3.1.

between binary data field (variable): Contains binary encoded information about tokens. This
is specified in section 2.1.14.4.3.2.

token offsets (variable): Contains binary encoded information about tokens. This is specified in
section 2.1.14.4.3.3.

LCP entries (variable): Contains binary encoded information about tokens. This is specified in
section 2.1.14.4.3.4.

2.1.14.4.3.1 Sparse Binary Data Field

This variable-length field represents a binary data field, as specified in section 2.1.14.1.4. Encoded

in this binary field is p number of sparse entries. Each sparse entry represents one token in the
dictionary. Only a subset of the token with token identifiers in the range of first to last MUST be
represented. This subset consists of the first token at the file page followed by every 16th token

thereafter, for example, the tokens which token ordinal numbers are 1, 17, 33, and so on. The
syntax of the field MUST be as specified in the following algorithm.

FOR i = 1 : i <= number of property indexes

 CALL DECODE64-D returns accnumDocsSparse[1][i]

 CALL DECODE64-D0 returns boolOccOffsetSparse[1][i]

 IF posPresent THEN

 CALL DECODE64-D0 returns posOccOffsetSparse[1][i]

 END IF

END FOR

FOR e = 1 : e <= number of sparse entries

 FOR i = 1 : i <= number of property indexes

 CALL NextBit returns bit

 IF bit is set THEN ; If not set, then there is no information for this entry

 CALL NextBit returns bit

 IF NOT bit is set THEN ; Numbers are rice encoded

 CALL RICE-2 with K=3, Max=8184, n=3 returns delta

 SET accnumDocsSparse[e][i] += delta

 CALL RICE-2 with K=9, Max=2096640, n=3 returns delta

 SET boolOccOffsetSparse[e][i] += delta

 IF posPresent THEN

 CALL RICE-2 with K=9, Max=2096640, n=3 returns delta

 SET posOccOffsetSparse[e][i] += delta

 END IF

 ELSE ; Numbers are coded in another way

 CALL DECODE64-D returns delta

 SET accnumDocsSparse[e][i] += delta

 CALL DECODE64-D0 returns delta

 SET boolOccOffsetSparse[e][i] += delta

 IF posPresent THEN

 CALL DECODE64-D0 returns delta

 SET posOccOffsetSparse[e][i] += delta

 END IF

 END IF

 END IF

 END FOR

 CALL RICE-2 with K=10, Max=2096128, n=3 returns betweenOffset[e]

END FOR

54 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The example calls subroutines that are specified in section 2.1.14.1.4. It requires various input

values that MUST be determined as follows:

number of property indexes: This field is the number of property indexes specified in the
dictionary paged index file (section 2.1.14.4.4).

number of sparse entries: Let a=token count (section 2.1.14.4.3). Then the value ceil(a/16)-1
MUST be equal to number of sparse entries. The function ceil rounds decimal values up to the
closest integer value, for example, ceil(4.3)=5.

posPresent: This value MUST be true if and only if the flags field for the dictionary paged index
file (section 2.1.14.4.4) is equal to the value 0xB1.

The fields are defined as follows.

accnumDocsSparse (integer array): This is a two-dimensional array that MUST contain the

item occurrence accumulated numbers for the current token in the current property index.
Take an element accnumDocsSparse[i][j]. The index variable i is in the range 1 to "token

count". The index variable j is in the range 1 to number of property indexes. The index

variable j has the same ordering properties as the property index ordering number.

boolOccOffsetSparse (integer array): An offset value that is used when retrieving
information from the Boolean occurrences binary data file for the current token and current
property index. The offset into the Boolean occurrences binary data file for current property
index MUST be offset = boolOccOffsetSparse + 64 in units of bits. The offset points to the

beginning of the field "token identifier entry" in the Boolean occurrences binary data file. Take
an element boolOccOffsetSparse[i][j]. The index variable i is in the range 1 to "token

count". The index variable j is in the range 1 to "number of property indexes". The index
variable j has the same ordering properties as the property index ordering number.

posOccOffsetSparse(integer array): Offset in number of bits into the position occurrence
compressed data file for current token current property index. The component uses the offset

posOccOffsetSparse, specified in bits, to compute the corresponding token entry in the
position occurrence compressed data file. For example, in the element
posOccOffsetSparse[i][j], the index variable i is in the range 1 to "token count". The index

variable j is in the range 1 to "number of property indexes". The index variable j has the same
ordering properties as the property index ordering number.

betweenOffset (integer array): This field MUST contain the number of bits in the between
region that are used to store the information about the 16 tokens before the current token in
the dictionary. So if the current token has token identifier 32, this number is the number of
bits used to store information about tokens with token identifiers 16,17…,31. For example the

element betweenOffset[i] has a subscript variable i that MUST be between 1 and the value

contained in the token count field.

padding bits region: This region is used for padding bits after the sparse binary data field.

The number of bits in this region MUST be specified so that the following between binary data
field begins on a 32-bit aligned boundary. The bits in this region MUST be set to 0.

2.1.14.4.3.2 Between Binary Data Field

This is a binary data field, as specified in section 2.1.14.1.4. Encoded in the binary field contains b
number of between binary data field entries. Each between entry MUST represent one token in
the dictionary. All the tokens are specified in consecutive order.

The algorithm requires the following input parameters:

55 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

number of tokens in file page: This field MUST contain the token count (section 2.1.14.1.4).

number of property indexes: This field MUST contain the number of property indexes value as

specified in the dictionary paged index file (section 2.1.14.4.4).

posPresent: This value MUST be true if and only if the flags field for the dictionary paged index

file (section 2.1.14.4.4) contains the value 0xB1.

The syntax of the field MUST be as specified in the following algorithm.

FOR e = 1 : e <= number of tokens in file page

 FOR i = 1 : i <= number of property indexes

 CALL NextBit returns bit

 IF bit is set THEN ; If not set, then there is no information for this entry

 CALL NextBit returns bit

 IF NOT bit is set THEN

 CALL RICE-2 with K=7, Max=524160, n=4 returns boolOccLength[e][i]

 IF posPresent THEN

 CALL RICE-2 with K=6, Max=262080, n=4 returns posOccLength[e][i]

 END IF

 ELSE

 CALL RICE-D with K=3, Max=8184 returns deltaDoc

 CALL RICE-2 with K=7, Max=524160, n=4 returns boolOccLength[e][i]

 IF posPresent THEN

 CALL RICE-2 with K=6, Max=262080, n=3 returns poslOccLength[e][i]

 END IF

 END IF

 END IF

 END FOR

 CALL RICE-2 with K=3, Max=8184, n=3 returns normDocCount

END FOR

deltaDoc (integer): This field MUST contain the value 1.

boolOccLength(integer array): This field MUST equal the number of bits used in the Boolean
occurrences binary data file to list data relevant for the current token in the current property index.
Take an element boolOccLength[i][j]. The index variable i MUST be between 1 and the value

contained in the number of tokens in file page field. The index variable j MUST be in the range 1 to
"number of property indexes". The index variable j MUST have the same ordering properties as the
property index ordering number.

posOccLength(integer array): This field MUST equal the number of bits used in the Boolean
occurrences binary data file to list data relevant for the current token in the current property index.
Given an element posOccLength[i][j], the index variable i is in the range 1 to token count (in the

header of current file). The index variable j is in the range 1 to "number of property indexes". The
index variable j has the same ordering properties as the property index ordering number.

padding bits region: This region is used for padding bits after the between binary data field. The
number of bits in this region MUST be specified so that the following token offsets region begins on
a 32-bit aligned boundary. The bits in this region MUST be set to 0.

2.1.14.4.3.3 Token Offsets

The token offsets region (this region) and the LCP entries region (section 2.1.14.4.3.4) determines
the full string content for each token.

56 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The first token in the file page MUST have the full string content specified in the dictionary paged
index file (section 2.1.14.4.4). It MUST be specified as token ordinal number 1.

The following formula MUST be used to determine the byte offset in the current page at which the
token offsets region begins:

offset = 16 + sparse size + between size

This offset is relative to the beginning of the file page.

The variables on the right side of the preceding formula MUST be determined as specified for the
sparse size field and between size field (section 2.1.14.1.4).

This region consists of token count - 2 entries and has a length of (token count – 2) * 2 bytes.

If token count is less than two, this region MUST NOT be present, and therefore has a size of 0.

Each offset entry is specified as a 2-byte unsigned integer field in little-endian order.

Token ordinal number 1 MUST NOT have an entry in the token offset region. The first token offset is
for token ordinal number 2. The next token offset is for token ordinal number 3, and so on up to the
last token ordinal number for the page. Each token offset is specified as a 2 byte unsigned integer
field.

The token offsets are stored as represented in the following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

token offset for token ordinal number 2 token offset for token ordinal number 3

token offset for token ordinal number 4 ...

token offset for last token ordinal number

The token offsets entries in this region are used to calculate the beginning offset for each LCP entry
(section 2.1.14.4.3.4).

The following algorithm MUST be used to find the LCP offset for token ordinal number T:

SET tokens region start offset = byte offset in the current file page to the start of this

token offsets region

SET the offset of token T = The value of token offset element number T in the token offset

region.

SET the LCP entry offset of token T = tokens region start offset + the offset of token T

To determine the full string content for all tokens in the page, look up the LCP entry offset for all

token ordinal numbers. The token identifier for a token is computed by comparing the full string
content of each token ordinal number with the string content of the sought token.

2.1.14.4.3.4 LCP Entries

The following algorithm is used to find the LCP start offset:

57 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

IF token count <= 2 THEN

 SET LCPs start offset = start of token offset field

ELSE

SET LCPs start offset = start of token offset field + (token count - 2) * 2

END IF

The following is an explanation of the Longest Common Prefix (LCP) algorithm, and how it is used in

this file.

Define an LCP binary tree in which each node in the tree consist of an integer "prefix", and a 0x00
terminated string where the "prefix" first letters have been removed. The top node in the tree has

"prefix=0". The child nodes have "prefix" set to the number of the common prefix letter with their
parent. For example, if the string value "ABCD" represents a parent node , and the string value
"ABGH" represents one child node, then the "prefix" value for the child node is set to 2, and the
string value is set to "GH".

The LCP entries region MUST specify the string values for the tokens with token ordinal numbers 2

to the last token ordinal number for the page. The string value for token with token ordinal number
1 MUST be located in the dictionary.idx2 file, as specified in section 2.1.14.4.4. The consecutive LCP

bulk fields together define the LCP tree. The format of the LCP-data field is specified using the
following ABNF grammar. The description of how the different nodes in the tree map to the list of
LCP entries follows that. The following algorithm MUST be implemented to read the LCP entries:

FOR i = 1 : i < token count prefix[i] = Read one byte as unsigned integer LCP[i] = Read

null terminated stringEND FOR

prefix (1 byte): An unsigned integer. The first occurrence is for token ordinal number 2, the next is

for token ordinal number 3, and so on.

LCP (null terminated string): A null terminated UTF-8 string, as specified in section 2.1.1.2.1.

The first element is for token ordinal number 2, the next for token ordinal number 3, and so on.

The tree structure MUST be mapped to the list of LCP entries as follows. Let (n1 be the token ordinal
number for the top node of the tree. The number n1 MUST be computed using the following
algorithm:

SET n1 to 1

WHILE n1 < token count

 SET n1 = n1 * 2

END WHILE

SET n1 = n1 / 2

The LCP entries that correspond to different generations of child nodes are computed using the

following algorithm:

; The two child nodes of the top-node are computed as follows:

SET first-generation-child-1 = n1 + n1/2

SET first-generation-child-2 = n1 – n1/2

; The four child nodes of child nodes of top node are computed as follows:

SET second-generation-child-1 = n1 + n1/2 + n1/4

SET second-generation-child-2 = n1 + n1/2 - n1/4

SET second-generation-child-3 = n1 - n1/2 + n1/4

SET second-generation-child-4 = n1 - n1/2 - n1/4; and so on.

58 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.14.4.4 Paged Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\dictionary.pidx2".

The query matching component uses this file to locate information for a specified token in the
dictionary paged data file stored. The file is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

magic number

version

header length

tag type tag length

flags void number of property indexes

index token "x" (variable)

...

magic number (4 bytes): This is a unsigned 32-bit integer in little-endian order and MUST
contain the value 1157702663.

version (4 bytes): The header version for this file. This field MUST contain the value 2.

header length (4 bytes): This integer MUST contain the value 8.

tag type (2 bytes): This integer MUST contain the value 1.

tag length (2 bytes): This integer MUST contain the value 4.

flags (1 byte): This field MUST contain the value 0x1B or value 0x9. If and only if the value
is 0x1B then the sparse binary data field and between binary data field in the dictionary
paged data file (section 2.1.14.4.3) MUST include position occurrences information. All
position occurrences files MUST be present if and only if the value is 0x1B. These are the
position occurrences compressed sizes file (section 2.1.14.3.1), the position occurrences

compressed occurrence counts file (section 2.1.14.3.2), and the position occurrences binary
data file (section 2.1.14.3.3).

void (1 byte): This field MUST be ignored.

number of property indexes (2 bytes): This field MUST contain the number of property
indexes in the full-text index context catalog.

59 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

index token "x" (variable): This field MUST contain a string in UTF-8 format that represents
the token for this entry. The string MUST be terminated with the value 0x00. There MUST be n

number of index token fields. The tokens are in alphabetical order. The total number of tokens
in the index token region is computed from the number of index token strings in this file. The

tokens represents a subset of the tokens found in the dictionary sorted hash file, see section
2.1.14.4.5. This file is used to find the file page for a specified token in the dictionary paged
data file, see section 2.1.14.4.3.

The algorithm for finding the corresponding file page for a specified token is as follows.

Let the first token in this file be token number 0, the next token number 1, and so on. Find
the first token in this index file that occurs alphabetically after the token to retrieve, and store
that token number. This number is the file page number for the token to retrieve. For

example, let the index contain the tokens "alpha, gamma, upsilon", and assign them numbers
0, 1 and 2. The token to search for is "roma". Because the dictionary is in alphabetical order,
the first word that occurs before "roma" is "gamma". The number that is assigned to
"gamma" is 1, and therefore the file page number for "roma" is 1.

2.1.14.4.5 Sorted Hash File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\dictionary.shash".

This file enables the indexing component to specify which tokens exist in an index partition.

This file specifies all the keys for the dictionary for current context catalog. It MUST be specified
using the following ABNF grammar:

dict-shash = token-count LF *(token-entry LF)

token-count = 0*11SP 1*12DIGIT

token-entry = occ-count doc-count token

occ-count = 1*DIGIT SP

doc-count = 1*DIGIT SP

token = UTF8-string

dict-shash: This is the dictionary sorted hash file.

token-count: The total number of tokens in the file. The number is prefixed with spaces, so that
the total first line length in bytes MUST be 12.

token-entry: A line that specifies a token with associated information. The token-entries MUST be
ordered alphabetically by the contained token.

occ-count: The total number of times the token occurred in the index partition. This field MUST be
ignored by the query matching component.

doc-count: The number of items that contain the token.

token: A token that was part of an item. This token is represented in UTF-8 format, as specified by

the UTF-8 string ABNF grammar in section 2.1.1.2.1.

2.1.14.4.6 Token Number Count Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\dictionary.wncidx".

60 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

This file enables the query matching component to determine which token identifier exists at the
beginning of each file page in the dictionary paged count data file.

This file MUST contain in consecutive order, one token identifier for each file page except the first
page, as specified in section 2.1.14.4.3. The first token identifier for the first token in each file page

MUST be written here. Assume that the dictionary paged data file contains p pages. The ABNF
grammar for this file is specified as follows:

file = *token-identifier

token-identifier = 4OCTET

file: the file MUST consist of p-1 token-identifier rules.

token-identifier (4 bytes): Occurrence number n of this field MUST equal the unsigned 32-bit

integer token identifier of the first token in page number n+1 in the dictionary paged count
data file.

2.1.14.4.7 Token Number Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\dictionary.wnidx2".

This file enables the query matching component to determine which token identifier exists at the

beginning of each file page in the dictionary paged data file.

This file MUST contain in consecutive order, one token identifier for each file page, except the first,
in the dictionary paged data file, for more information see section 2.1.14.1.2. The first token
identifier for the first token represented at each file page MUST be written here.

The file is specified using the following ABNF:

file = *token-identifier

token-identifier = 4OCTET

For information about each element in the preceding ABNF, see the ABNF element explanations in

section 2.1.14.4.6.

2.1.14.4.8 Warmup File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\textcatalogname\dictionary.warmup".

This file enables the query matching component to load into memory information in the dictionary
paged data file, as specified in section 2.1.14.4.3 for the tokens specified in this file.

The indexing component MUST generate the token entries in this file for a subset of the tokens in
the corresponding dictionary sorted hash file, as specified in section 2.1.14.4.5.

The tokens in this file are sorted in the same order as the corresponding tokens in the dictionary
sorted hash file.

The file is specified using the following ABNF format:

dictionary-warmup = *token LF

61 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

token = UTF8-string

token: A token that is part of an item. The token MUST be represented as a UTF-8 encoded string.

2.1.15 Integer Occurrence Index Files

2.1.15.1 Overview

The integer index files contain the index and information used by the query matching component for
numeric key to item identifiers lookups. A numeric managed property is a managed property of the

type int, decimal, float or datetime. There can be zero or more managed properties for these
numeric types.

For each numeric managed property, a numeric index directory MUST be made within the numeric
context catalog directory. The name of each numeric managed property subdirectory MUST be the
same as the string for each property index name, as specified in the ABNF in [MS-FSSCFG] section
2.9.1. The property index name MUST be prefixed with "bidx". The name of the corresponding

numeric managed property is the same as the string that follows the "bidx" prefix. In the following

integer occurrence file set specification sections, the fieldname variable name that is used in the
path specification contains the numeric managed property name.

Each integer index file set MUST contain the numeric fields for each property index in the context
catalog that have type set to "integer" in the index.cf file, as specified in [MS-FSSCFG] section 2.9 .

The numeric fields are used as keys when retrieving entries from the index files. The values that are
found by this key-value lookup process are in some cases file offsets, but in other cases the field is a
document identifier.

The integer keys in the different integer index files MUST be 8 bytes. The internal integer
representation of the value of a numeric field depends on the data type of the managed property.
This conversion is specified in section 2.1.1.2.2.

In the specification of the following integer index files, the integer keys are referred to often as low

and high integer key in the individual entry types. This clarifies the purpose of the integer key in the
specific entry. Low integer key means it will be used for integer range lookups and the low key is the

initial value. High integer key is the end value for integer range lookups.

The integer occurrences sparse sparse index file, sparse index file, index file, and data files are
related as specified in the following figure.

Figure 5: Integer index files relationship

%5bMS-FSSCFG%5d.pdf
%5bMS-FSSCFG%5d.pdf

62 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

The various integer occurrences bit-vector index files and bit-vector data file are related as specified
in the following figure.

Figure 6: Integer bit-vector index files relationship

A bit-vector is written as specified in the following procedure.

First, a calculation of a bitmapfactor value is performed as follows:

1. Calculate the initial bitmapfactor value by finding the lowest power of two that is greater than

the number of items in the index. For example, with 30089 items, the bitmapfactor is first set

to 32768.

2. Divide the bitmapfactor by 32 to make a bitmapfactor of one represent the same amount of
disk space usage as one document identifier element (32 bytes) in the intocc.dat file.

3. If the bitmapfactor is less than 4096, set it to 4096.

When generating the index, for every new integer key added to intocc.idx, the indexing component
MUST determine whether the current total occurrence count, that is the number of items that

contain the integer key, is greater than the bitmapfactor. If it is greater, then the component
writes a bit-vector to intocc.bdat. An intocc.bidx entry MUST also be written with the low integer key
set to the low integer key used at the beginning of this round of bit-vector storing. The high integer
key is set to the integer key which occurrences caused the occurrence count to add up to more than
the current total bitmapfactor.

All document identifiers that are associated with integer keys are stored in the intocc.dat file.

2.1.15.2 Bit-vector Data File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\bi1\bidxfieldname\intocc.bdat".

63 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

This file enables the query matching component to determine which items contain the specified
integer value.

This file contains zero or more bit-vectors. Each bit-vector specifies which document identifiers have
an integer value in the range between the low and high integer keys inclusively. The low and high

integer keys are specified in an entry in the integer occurrence bit-vector index file, as specified in
section 2.1.15.4. Each entry in that file points to a bit-vector in this file. The entries in the integer
occurrence bit-vector less than index file (section 2.1.15.5) and in the integer occurrence bit-vector
greater than index file (section 2.1.15.3) also points to bit-vectors in this file.

The total number of bit-vectors MUST be equal to the sum of the number of index entries fields in
the header of the integer occurrence bit-vector index file, the bit-vector greater than index file, and
the bit-vector less than index files.

The format of this file is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

bit vector 0 (variable)

...

bit vector 1 (variable)

...

bit vector 2 (variable)

...

bit-vector (variable): A sequence of bits, in which each bit represents an item identity. Bit
number 0 is for item 0, bit 1 for item 1 and so on. Each bit-vector contains at least as many
bits as there is items in the index. The number of bits MUST be rounded up so the total
number of bits is aligned on 32-bit length by using padding. The bits that are not associated
with document identifiers MUST be set to zero and MUST be ignored.

2.1.15.3 Bit-Vector Greater Than Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\bi1\bidxfieldname\intocc.bgtidx".

This file enables the query matching component to determine which items have integer values
greater than the specified value.

The query matching component uses this file for efficient integer range query evaluation.

This file contains a header followed by zero or more index entries. The file is specified as follows.

64 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

number of index entries

index entries (variable)

...

number of index entries (4 bytes): The number of index entries following the header as a
unsigned integer field in little-endian order. A value of zero means there are no index entries.

index entries (variable): Zero or more index entries. Each entry is 24 bytes long.

Each index entry MUST be specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

integer bit-vector byte offset

...

integer occurrence byte offset

...

low integer key

...

integer bit-vector byte offset (8 bytes): The initial byte offset for a bit-vector in the integer
occurrences bit-vector data file, as specified in section 2.1.15.2. The bit-vector represents the
set of document identifiers with numeric values that are greater than the low integer key in

this entry. This is an unsigned 64-bit field in little-endian order.

integer occurrence byte offset (8 bytes): The byte offset for the first occurrence of the low
integer key in the integer occurrences data file, as specified in section 2.1.15.7. This is an
unsigned 64-bit field in little-endian order.

low integer key (8 bytes): The low integer key for this entry. This is of the data type for this
numeric managed property, as specified in section 2.1.1.2.2.

2.1.15.4 Bit-vector Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\bi1\bidxfieldname\intocc.bidx".

This file enables the query matching component to determine where in the integer occurrence data
file and integer occurrence bitvector data file to begin reading the occurrences for the specified
integer value.

65 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

This file contains a header followed by zero or more integer occurrence bit-vector index entries. The
file is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

number of items

number of index entries

integer bit-vector index entries (variable)

...

number of items (4 bytes): The number of items in the index partition as an unsigned 32-bit
field in little-endian order. This field contains the value in the document summary quantity

count file (section 2.1.16.5).

number of index entries (4 bytes): The number of integer bit-vector index entries that occur
after the header in this file. This is an unsigned 32-bit field in little-endian order. A value of
zero means there are no bit-vectors.

integer bit-vector index entries (variable): Zero or more bit-vector index entries. Each entry
is 40 bytes long. The entries are sorted in ascending order by low integer key, and then
descending order by high integer key. For example, for entries with the same low integer key,

the high integer keys MUST be sorted in decreasing order. The format of each entry is
specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

low integer key

...

high integer key

...

integer bitmap data file offset

...

integer occurrence data file offset

...

integer occurrences

66 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

empty value

low integer key (8 bytes): The lowest integer key used by the items in the bit-vector to which
this entry points. This field is a signed 64-bit field in little-endian order, and is converted
based on the data type for this numeric managed property, as specified in section 2.1.1.2.

high integer key (8 bytes): The highest integer key used by the items in the bit-vector to
which this entry points. This field is a signed 64-bit field in little-endian order, and is
converted based on the data type for this numeric managed property, as specified in section

2.1.1.2.

integer bitmap data file offset (8 bytes): The byte offset into the integer occurrence bit-
vector data file (section 2.1.15.2) where the bit-vector for the range from the low to the high
integer key is stored. This field is an unsigned 64-bit field in little-endian order.

integer occurrence data file offset (8 bytes): The offset into the integer occurrence data file
(section 2.1.15.7) where the low integer key occurrence entries begin. This field is an

unsigned 64-bit field in little-endian order. The offset value is the document identifier element

number in the integer occurrence data file. Each document identifier element is 4 bytes long,
so the integer occurrence data file offset value 1 in this file MUST be byte offset 4 in the
integer occurrence data file, and so on. The document identifier entries in the integer
occurrence data file is sorted in ascending order. Therefore the document identifier entries
that are between each file offset referenced from this file are also in ascending order.

integer occurrences (4 bytes): The total number of items that have integer values in the low

to high integer key range. This is an unsigned 32-bit field in little-endian order. This field
contains the number of items for the range from the low to the high integer key in this entry.
This is the same as the number of bits set to 1 in the corresponding bit-vector in the integer
occurrence bit-vector data file (section 2.1.15.2). It is also the same as the number of
document identifier entries for this low to high range in the integer occurrence data file
(section 2.1.15.7).

empty value (4 bytes): An empty value, used to enforce 64-bit alignment of consecutive

integer bit-vector index entries. This field MUST be zero, and MUST be ignored. This field is
specified as an unsigned 32-bit field in little-endian order.

2.1.15.5 Bit-vector Less than Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\bi1\bidxfieldname\intocc.bltidx".

This file enables the query matching component to determine which items have integer values less

than the specified value.

This file contains a header followed by zero or more index entries. It is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

number of index entries

index entries (variable)

67 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

...

number of index entries (4 bytes): The number of index entries following the header. A value
of zero means there are no index entries. This field is an unsigned 32-bit integer field in little-
endian order.

index entries (variable): Zero or more index entries. Each entry MUST be 24 bytes long, and is
specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

integer bit-vector byte offset

...

integer occurrence byte offset

...

high integer key

...

integer bit-vector byte offset (8 bytes): The beginning byte offset for a bit-vector in the

integer occurrences bit-vector data file that represents the set of document identifiers with
numeric values less than the high integer key in this entry. This field is an unsigned 64-bit
field in little-endian order.

integer occurrence byte offset (8 bytes): The byte offset into the intocc.dat file for the first
occurrence of the lowest value that is greater than the high integer key. This field is specified
as an unsigned 64-bit field in little-endian order.

high integer key (8 bytes): The high integer key for this entry, formatted as the data type for

this numeric managed property as specified in section 2.1.1.2.

2.1.15.6 Bit-vector Unique Index File

The path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\bi1\bidxfieldname\intocc.buidx".

This file enables the query matching component to determine where the index entries for each
integer key begin in the bit-vector index file.

The entries in this file are sorted in ascending order based on the low integer key. Each unique

integer key is specified only once.

The file contains zero or more entries that are specified as follows.

68 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

low integer key

...

integer bit-vector index offset

...

low integer key (8 bytes): The low integer key for this entry, formatted in the data type for
this numeric managed property, as specified in section 2.1.1.2.

integer bit-vector index offset (8 bytes): The entry number initial offset for the bit-vector
index entry in the integer occurrences bit-vector index file with the low integer key that is

equal to the low integer key in this entry. This field is an unsigned 64-bit field in little-endian
order.

2.1.15.7 Data File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\bi1\bidxfieldname\intocc.dat".

This file enables the query matching component to determine which items contain the specified

integer value. This is used in combination with the other integer index files to find the correct set of
items for a range of integer values.

This file contains sequences of one or more 32-bit document identifier values for each 64-bit
numeric key that is represented for this field. For each numeric key, the offset value in the file MUST
specify the byte offset into this file for the set of document identifiers that has that numeric key. The

format of the file is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

document identifier array (variable)

...

document identifier array (variable): An array of one or more document identifiers. Each
document identifier is as shown in the following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

document identifier

document identifier (4 bytes): An document identifier value that uniquely represents one of
the items in the index structure. Each document identifier is an unsigned 32-bit field in little-

endian order.

69 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.15.8 Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\bi1\bidxfieldname\intocc.idx".

This file enables the query matching component to specify the offset at which to begin reading the
integer occurrences data file for the specified occurrence information, as specified in section
2.1.15.7.

This file contains sets of integer key, number of occurrences and offset values. The file format is
specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

integer index array (variable)

...

integer index array (variable): An array of integer index entries. An integer index entry is
specified in the following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

integer key

...

empty value

number of occurrences

offset value

...

integer key (8 bytes): The numeric key for this entry as an 8 byte integer. All numeric type
values supported in the schema object model will be converted into an 8 byte integer field
during indexing. The conversion process from the supported data types to the internal
representation is specified in section 2.1.1.2.

empty value (4 bytes): An empty value, that is used to ensure proper alignment for the 64-bit
offset value. This field MUST be zero, and MUST be ignored.

number of occurrences (4 bytes): The total number of items in which this integer value
occurs. Multiple occurrences of a numeric value in one item are counted as only one
occurrence. This field is specified as an unsigned 32-bit field in little-endian order.

offset value (8 bytes): This value multiplied by 4 MUST be the byte offset for the initial position
in the integer occurrences data file for the sequence of document identifiers that contains

%5bMS-GLOS%5d.pdf

70 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

integers equal to the integer key field. This field is an unsigned 64-bit field in little-endian
order.

2.1.15.9 Limits File

The path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\bi1\bidxfieldname\intocc.limits".

This file enables the query matching component to determine the maximum and minimum values
for the numeric managed property that is specified in the fieldname.

This file includes the minimum and maximum numeric values for this field, represented as decimals
in human-readable ASCII text.

The minimum and maximum values MUST be equivalent to the first and last integer key entries in

the intocc.idx file for the same field, with the difference that the numbers are represented as ASCII
decimals in the intocc.limits file.

The format of this file is specified using the following ABNF grammar:

intocc-limits = numeric-value64 ":" numeric-value64 LF

 ; minimum 0, maximum 2^64-1

numeric-value64 = 1*20DIGIT

2.1.15.10 Sparse Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\bi1\bidxfieldname\intocc.spidx".

This file enables the query matching component to look up every 512th entry in the integer
occurrence index file, as specified in section 2.1.15.8.

This file includes one integer key for every 512th integer key entry in the integer occurrences index

file. The first integer key in that file MUST be the first entry in this file. Each integer key is 8 bytes.

Each element in this file MUST be specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

integer key

...

integer key (8 bytes): The integer key that is the next 512th integer key in the integer
occurrences index file. There is one or more of these elements in this file.

For more details on the relationships between the integer occurrences index file, the sparse
index file, and the sparse sparse index file, see the integer occurrences sparse sparse index
file in section 2.1.15.11.

71 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.1.15.11 Sparse Sparse Index File

Path and file name of this file MUST be
"PP\index_TTTT\index_data\merged\bi1\bidxfieldname\intocc.spspidx".

This file enables the query matching component to look up every 512th entry in the integer
occurrence sparse index file, as specified in section 2.1.15.10.

This file includes one integer key for every 512th integer key entry in the integer occurrences sparse
index file. The first integer key in that file MUST be the first entry in this file. Each integer key is 8
bytes.

The query matching component uses this file to perform fast lookups of a specific integer key in the
integer occurrences sparse index file, then perform lookups in the integer occurrences index file

(section 2.1.15.8), and finally find the set of items for the sought integer key in the integer
occurrences data file (section2.1.15.7).

Each element in this file MUST be specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

integer key

...

integer key (8 bytes): The integer key that is the next 512th integer key in the integer
occurrences sparse index file. There is one or more of these elements in this file.

2.1.16 Document Summary Files

2.1.16.1 Overview

The document summary files contain sets of field values for each item in the index.

There is only one set of docsum.idx, docsum.overflow, and docsum.dat files for each index partition,
and they are stored directly within the merged directory.

The document summary index and data files are related as specified in the following diagram.

72 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Figure 7: Document summary files relationship

The document summary data file contains different sets of document summaries. The set type is
determined by the document summary class identifier. The format of each document summary set is

controlled by the definitions for one of the document summary classes in the summary.cf file, as
specified in [MS-FSSCFG] section 2.18.

2.1.16.2 Data File

Path and file name of this file MUST be "PP\index_TTTT\index_data\merged\docsum.dat".

This file enables the query matching component to return to the search front-end the document
summaries for one or more requested document identifiers. The document summaries are requested

using the protocol specified in [MS-FSDQE].

This file contains the result details view data sets for all document identifiers. The sets are stored
item by item; the set associated with document identifier 0 is processed first, then the set
associated with document identifier 1, and so on.

The query matching component uses the document summary index file entry for a document
identifier to perform the following tasks:

Find the offset in the document summary data file. The offset is the byte position at which to

begin reading the document summary for the specified summary.

Calculate the length of the document summary set associated with an item. The length is

calculated by looking up the offset of the next document identifier, and subtracting the offset for

the current document identifier. The difference is the size of the current document identifier.

Each docsum.dat element is specified as follows.

%5bMS-FSSCFG%5d.pdf
%5bMS-FSDQE%5d.pdf

73 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

document summary class identifier

document summary set (variable)

...

document summary class identifier (4 bytes): The summary identifier for this document
summary set. This number is an unsigned integer field in little-endian format. The query
matching component uses the document summary class identifier to determine how to decode
the document summary set. The content of each field in the set is then extracted as specified
in the corresponding document summary class identifier in the summary.cf file, as specified in
[MS-FSSCFG] section 2.18.

document summary set (variable): The set of document summaries for this document

identifier. The entries within the set can be of the following types: string, data, longstring,
as specified in following table.

Type Description

string A 2-byte length field, followed by a variable length field representing the string
content.

The length field MUST be an unsigned 2-byte field in little-endian order.

The string field MUST NOT be zero terminated and MUST be in UTF-8 encoding.

data A 2-byte length field, followed by a variable length field containing the information.

The length field MUST be an unsigned 2-byte field in little-endian order.

The information in the variable length field MUST be stored untransformed, as
represented in the original item that was indexed. Each byte is represented using any
byte value from 0 to 255 inclusively, not only ASCII or UTF-8 characters.

longstring Two 4-byte fields, followed by a variable length compressed information buffer.

The two length fields are stored as 4 byte unsigned fields in little-endian order.

The first length parameter is computed as the length of the compressed buffer section
that follows plus the 4 bytes. In addition, bit 32 of this length field is set to 1, OR the
initially calculated length with 0x8000000.

The second length parameter contains the original length of the string that was
compressed. When decompressed the original string MUST have a length equivalent
to the value of this parameter.

In the compressed information buffer each byte field is represented using any value
from 0 to 255 inclusively. The compression MUST use the zlib format, as specified in
[RFC1950]. The "deflate" compression method MUST be used. When decompressed,
the output is a string in UTF-8 format that contains the text parts of an item.

The document summary elements in this file MUST be in the same order as the field

elements for the corresponding document summary class identifier in the summary.cf file, as
specified in [MS-FSSCFG] section 2.18.2.

2.1.16.3 Index File

Path and file name of this file MUST be "PP\index_TTTT\index_data\merged\docsum.idx".

%5bMS-FSSCFG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90301
%5bMS-FSSCFG%5d.pdf

74 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

This file enables the query matching component to retrieve the offset for the specified item from the
document summary data file. The offsets are also used to calculate the size in bytes of each

document summary data file’s entries.

This file contains the 32-bit offset pointers into the docsum.dat file for all document identifiers. It

contains as many entries as there are items in the index partition, plus one entry that specifies the
offset just beyond the last entry in the docsum.dat file. Each entry is a 32-bit unsigned field in little-
endian order.

The first entry in this file points to the offset (in bytes) for document identifier 0 in docsum.dat,
which is at offset 0. The second entry points to the offset for document identifier 1, and so on.

The last entry in this file points to the offset value one byte beyond the end of the docsum.dat file.
This last entry and the entry before it MUST be used by the query matching component to calculate

the size of the last document summary data file entry. The size in number of bytes in the
docsum.dat file MUST be equivalent to the last offset value in the docsum.idx, plus the last offset
value in the docsum.overflow file, if the overflow file contains any entries. Each docsum.idx element
is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

delta offset

delta offset (4 bytes): The delta offset value to use for lookups in docsum.dat. This is used
directly, or in addition to the base offset specified in the docsum.overflow file. The field is an
unsigned 32-bit little-endian field. For document identifiers which identifier is lower than the
first element in docsum.overflow, the delta offset is used directly for lookup into docsum.dat.

2.1.16.4 Overflow File

Path and file name of this file MUST be "PP\index_TTTT\index_data\merged\docsum.overflow".

This file enables the query matching component to calculate the correct offset of the document
summary of an item when the document summary index file is larger than 2^32 bytes.

This file contains pairs of 64-bit document identifiers and 64-bit offset values.

In case the document summary data file, as specified in section 2.1.16.2, is smaller than 2^32
bytes, this file has no elements and MUST therefore be of size 0.

For every entry added to the document summary index file (section 2.1.16.3) the protocol server
MUST determine whether the delta offset value of the new entry causes an overflow. If it will cause
an overflow, then an entry MUST be added to the overflow file. The entry in the document summary
index file contains the delta value that MUST be added to the offset value for the corresponding
entry in this file.

Each entry in this file is specified as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

document identifier

75 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

...

offset value

...

document identifier (8 bytes): The document identifier that marks the first document
identifier where it is necessary to add the 64-bit offset specified in the same element in this
file with the same document identifier and all following document identifiers delta offset in the
document summary index file. The document identifier field MUST be specified as an unsigned
64-bit integer field in little-endian order, and range from 0 to 2147483647 (2^31-1).

offset value (8 bytes): This is the base offset in the calculation specified in the preceding

document identifier field. This is an unsigned 64-bit integer field in little-endian order.

2.1.16.5 Quantity Count File

Path and file name of this file MUST be "PP\index_TTTT\index_data\merged\docsum.qcnt".

This file enables the query matching component to determine the number of items in the index
partition.

This file specifies the number of items in the index. The number of items is written as a numeric

ASCII value terminated with the linefeed character 0x0A, and is computed as (size of docsum.idx /
4) - 1.

The file is specified as in the following ABNF grammar:

docsum-qcnt = docs-in-index LF

docs-in-index = 1*10DIGIT

2.1.17 Unique Identity Data File

Path and file name of this file MUST be "PP\index_TTTT\index_data\merged\uniqueid.dat".

This file enables the query matching component to use the item internal identifier to determine
which document identifier the specified item contains.

This file contains mapping tables from item internal identifiers to document identifiers. It MUST be
as follows. The header occurs first, followed by the mappings pages, which are the main content of
the file.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

string "Version"

... version

... header size

76 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

... item count

... pages count

... page boundary entries

...

page boundary entry (20 bytes)

...

string "Version" (7 bytes): The string "Version" occupies the first 7 bytes of the header, using
both uppercase and lowercase characters. This string MUST be in ASCII format.

version (4 bytes): The version field MUST be zero as an unsigned 32-bit integer in little-endian

order.

header size (4 bytes): The header size specifies the length in bytes of the header of this file. It
is calculated as follows:

7+4*4+page_count*20+4+collection_count*4+sum_of_all_collection_lengths.

The page_count is specified in the pages count entry. The collection_count is specified in

the collection count entry. The sum_of_all_collection_lengths is the sum of the collection
string length values in the collection string entries section of the header. The total size in
bytes of the file specified in this section MUST be Header size + (16384 * pages count)

bytes. This is an unsigned 32-bit integer in little-endian order.

item count (4 bytes): The number of items in the index, and thereby also specifying the total

number of mappings in this file. This is an unsigned 32-bit integer in little-endian order.

pages count (4 bytes): The number of pages. This is an unsigned 32-bit integer in little-endian
order.

page boundary entries (variable): This field contains the page boundary entries. The number
of page boundary entry elements is the same as the pages count value specified.

page boundary entry (20 bytes): This specifies the last item mapping on each page. Each
page boundary entry consists of an item internal identifier and a collection identifier. This
field is as specified in the following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

item internal identifier (16 bytes)

...

collection identifier

77 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

collection count

collection string entries (variable)

...

collection string entry (variable)

...

item internal identifier (16 bytes): A 16 bytes long byte sequence that specifies an item in
the index partition. The field is represented in binary format in this field. It contains the same
value as the ASCII string representation of the docname-checksum part of an item internal
identifier in the document identifier map file, as specified in section 2.1.9.

collection identifier (4 bytes): The collection identifier for the page boundary entry. The
collection identifier is the string number in the collection string entries table. String number

0 is collection identifier 0, string number 1 is collection identifier 1, and so on. This is an
unsigned 32-bit integer in little-endian order.

collection count (4 bytes): The number of collections specified in the collection string
entries section. This is an unsigned 32-bit integer in little-endian order.

collection string entries (variable): The collection string entries. The number of entries is
stored in the collection count field.

collection string entry (variable): Each collection string entry contains a collection string

length field and a collection string content field, as specified in the following table.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

collection string length

collection string content (variable)

...

collection string length (4 bytes): The length of the collection string content array
following the length. This is an unsigned 32-bit integer in little-endian order.

collection string content (variable): This MUST be equivalent to the collection part of the
internal identifier for the item, including the underscore and the text following it. The
underscore MUST be included in the string content as the first byte. The string is specified in
ASCII format.

The preceding specifies the fields in the header of the uniqueid.dat file. The description of the
content in each mapping page in this file follows.

Each mapping page is 16384 bytes. Each page contains the same number of item map

entries, except for the last page which can contain fewer entries. An item map entry is
specified as follows.

78 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

item internal identifier (16 bytes)

...

collection ID

document identifier

item internal identifier (16 bytes): The 16-bit value for an item internal identifier. This value
is represented in hexadecimal in this field. This hexadecimal value represents the same value
as the docname-checksum value for an item internal identifier in the document identifier map
file.

collection ID (4 bytes): This specifies the collection name with which the item is associated.
The collection identifier is the string number in the collection string entries section in the
header of this file. This is an unsigned 32-bit integer in little-endian order.

document identifier (4 bytes): The document identifier, as used in the other index files. This
is an unsigned 32-bit integer in little-endian order.

An item map entry is 24 bytes. A page is 16,384 bytes. The remaining bytes in a page that
are not item map entries MUST be filled with the ASCII character 0x23, the number sign (#).

2.1.18 Duplicates Data File

The path and file name of this file MUST be "PP\index_TTTT\index_data\merged\duplicates.dat".

This file enables the query matching component to determine which document identifiers have

duplicates in the index partition. The query matching component discards these duplicates from all
search results.

This file can be of size zero, which means there are no duplicate items in the index partition.

When the file has entries, each entry specifies a document identifier that has a duplicate.

The file is specified using the following ABNF grammar:

duplicates-dat-file = *(doc-id LF)

doc-id = 1*10DIGIT

doc-id (variable): This is a document identifier that is a duplicate in the index partition. The

doc-id text string MUST be equal to the corresponding text string specified after the space
character in the urlmap.txt file.

2.1.19 Duplicates Text File

The path and file name of this file MUST be "PP\index_TTTT\index_data\merged\duplicates.txt".

79 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

This file enables the query matching component to determine which items with the specified internal
identification have duplicates in the index partition. The query matching component discards these

duplicates from all search results.

This file MUST contain zero or more entries that specify the duplicate items in the index partition.

Each item is associated with an internal identifier. In addition a store identifier string MUST be
specified for each internal identifier. See the internal-id and store-id fields for the specification of
these two string values.

The file is specified using the following ABNF grammar;

duplicates-text-file = *(duplicate-key LF)

duplicate-key = internal-id "," store-id

internal-id = 32HEXDIG "_" collection-name

store-id = 1*(ALPHA / DIGIT / "_" / "\" / ".")

collection-name = 1*(ALPHA / DIGIT / "-")

duplicate-key: This is a string that specifies an item in the index partition that is a duplicate of

another item in the index.

internal-id: This string uniquely identifies each item in the index.

store-id: This string specifies the store from which the item was read by the indexing component.
The store can be a full path and file name.

collection-name: This string specifies the content collection to which the item belongs.

2.2 Dictionary File Set

2.2.1 Index Configuration File

Path and file name of this file MUST be "FQDN.normalized.TT\index.cf".

This file is specified in the same manner as the index file set index configuration file, as specified in
section 2.1.2.

2.2.2 Index Partition Tuning File

The path and file name of this file MUST be "FQDN.normalized.TT\indextune.cf".

This file is specified in the same manner as the index file set index partition read tuning file, as

specified in section 2.1.3.

2.2.3 Stamp Text File

The path and file name of this file MUST be "FQDN.normalized.TT\stamp.txt".

This file is specified in the same manner as the index file set Stamp text file , as specified in section
2.1.6.

2.2.4 Version Information File

The path and file name of this file MUST be "FQDN.normalized.TT\version.txt".

80 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

This file is specified in the same manner as the index file set Version information file, as specified in
section 2.1.11.

2.2.5 Merged Fusion Dictionary Counts Done Stamp File

The path and file name of this file MUST be "FQDN.normalized.TT\merged\.fusiondictcounts_done".

This file specifies that all files in this file set are complete and consistent.

This file MUST be present, MUST be 1 byte in size, and MUST contain the byte value 0x64, that is,
the ASCII character "d".

The file system timestamp for this file specifies when the file set generator finished processing
successfully.

2.2.6 Dictionary Paged Count Data File

Path and file name of this file MUST be

"FQDN.normalized.TT\merged\textcatalogname\dictionary.pcdat".

This file is specified in the same manner as the index file set Dictionary paged count data file, as
specified in section 2.1.14.4.1.

The tokens included in this file represent the set of tokens for all index partitions that exist on one

indexing node.

2.2.7 Dictionary Paged Count Index File

The path and file name of this file MUST be
"FQDN.normalized.TT\merged\textcatalogname\dictionary.pcidx".

This file is specified in the same manner as the index file set Dictionary paged count index file, as
specified in section 2.1.14.4.2.

2.2.8 Dictionary Token number Count Index File

The path and file name of this file MUST be
"FQDN.normalized.TT\merged\textcatalogname\dictionary.wncidx".

This file MUST be specified the same way as the index file set Dictionary token number count index
file, as specified in section 2.1.14.4.6.

2.3 State File Set

2.3.1 Index Set Generation File

This file specifies the most recent generation of index files. Path and file name of this file MUST be
"state\indexsetgeneration".

This file is specified using the following ABNF grammar:

indexsetgeneration = generation

generation = 1*DIGIT

81 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

generation: This is an unsigned integer field that specifies the currently active generation of the

index set. This is a unique value for each new generation. The field is encoded as an ASCII string.

2.3.2 Index Set Stamp File

This file specifies the timestamp for the most recent generation of index files. Path and file name of
this file MUST be "state\stamp.txt".

This file is specified using the following ABNF grammar:

stamp-txt = timestamp

timestamp = 1*DIGIT

timestamp: This is the timestamp for the current generation. This field specifies the point in time

when this generation of the index partitions set was made available to the query matching
component. The timestamp is specified as the number of seconds after 1970-01-01T00:00:00UTC.
The field is encoded as an ASCII string.

2.3.3 Index Partition Stamp File

The path and file name of this file MUST be "state\PP\stamp.txt".

This file specifies the timestamp for index partition PP.

This file is specified using the following ABNF grammar:

stamp-txt = timestamp

timestamp = 1*DIGIT

timestamp: This is the timestamp that specifies when this index partition was generated. The

timestamp is specified as the number of seconds after 1970-01-01T00:00:00 UTC. The field is
encoded as an ASCII string.

2.3.4 Index Partition Index Valid File

File path MUST be "state\PP\index_valid".

This file specifies the timestamp for index partition PP when the indexing component verified that
the index was valid. The timestamp in this file can be different from the timestamp in section 2.3.3.

This file is specified using the following ABNF grammar:

index-valid = timestamp-ns

timestamp-ns = 1*DIGIT

timestamp-ns: This is the timestamp for when this index partition was generated. It represents the

number of nanoseconds after 1970-01-01T00:00:00UTC. The field is encoded as an ASCII string.

2.4 Generation File Set

2.4.1 Stamp File

The path and file name of this file MUST be "PP\index_TTTT\NN\stamp.txt".

82 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

This field specifies the time when this generation of index partitions was made available to the query
matching component.

This file is specified using the following ABNF grammar:

stamp-txt = timestamp

timestamp = 1*DIGIT

timestamp: This is the timestamp for the index partition generation. This field represents the time

when this generation of the index partitions set was made available to the query matching
component. It MUST be specified as the number of seconds after 1970-01-01T00:00:00UTC. The
field is encoded as an ASCII string.

2.4.2 Sorted Document Identifier Map File

The path and file name of this file MUST be "PP\index_TTTT\NN\urlmap_sorted.txt".

This file MUST be specified the same way as the index file set Sorted document identifier map file,
as specified in section 2.1.10.

This file MUST be present.

The entries in this file specify all items in the index partition, and indicate for each item whether it
will be excluded or included in search results by the query matching component.

For each generation, that is, the NN value in the path, this file specifies the state of excluded and
included items for that generation.

2.4.3 Exclusion Listed File

Path and file name of this file MUST be "PP\index_TTTT\NN\exclusionlisted.txt".

This file enables the indexing component to maintain a record of which items have been excluded

from search results by the query matching component.

This file MUST only be present if there are items to be excluded from search results.

When present, this file contains the internal identifiers for the items that have been excluded by the
query matching component that reads the files in this index partition. The excluded items MUST not
be returned in any query results.

For each generation, that is, the NN field in the path, this file reflects the excluded items for that
generation.

This file is specified using the following ABNF grammar:

exclusionlisted-txt = 1*2147483647(internal-id LF)

internal-id = docname-checksum "_" collection-name

docname-checksum = 32HEXDIG

collection-name = *(ALPHA / DIGIT / "-")

docname-checksum: This is an MD5 hash of the original name of the document.

collection-name: This is a string that specifies the content collection to which the item belongs.

83 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.5 Counter File Set

2.5.1 Activated Counter File

Path and file name of this file MUST be "PP\activated_counter\counter".

This file is specified using the following ABNF grammar:

counter-file = count-value

count-value = 1*DIGIT

count-value: This is an unsigned integer that specifies how many times this index partition was
activated for use, as specified in [MS-FSIPA]. The field is encoded as an ASCII string.

2.5.2 Activated Counter Stamp File

The path and file name of this file MUST be "PP\activated_counter\stamp.txt".

This file is specified using the following ABNF grammar:

indexsetgeneration = timestamp

timestamp = 1*DIGIT

timestamp: This is a string that specifies the time of creation for the Activated Counter file, as

specified in section 2.5.1. The timestamp represents the number of seconds after 1970-01-
01T00:00:00UTC. The field is encoded as an ASCII string.

2.5.3 Activated Indexed Counter File

Path and file name of this file MUST be "PP\activated_indexed_counter\counter".

This file is specified using the following ABNF grammar:

counter-file = count-value

count-value = 1*DIGIT

count-value: This is an unsigned integer that specifies how many times this index partition was

both indexed and activated for use, as specified in [MS-FSIPA]. The field is encoded as an ASCII
string.

2.5.4 Activated Indexed Counter Stamp File

The path and file name of this file MUST be "PP\activated_indexed_counter\stamp.txt".

This file is specified using the following ABNF grammar:

indexsetgeneration = timestamp

timestamp = 1*DIGIT

timestamp: This is a string that specifies the time of creation for the index counter file, as specified
in section 2.5.5. The timestamp represents the number of seconds after 1970-01-01T00:00:00UTC.

The field is encoded as an ASCII string.

%5bMS-FSIPA%5d.pdf
%5bMS-FSIPA%5d.pdf

84 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

2.5.5 Index Counter File

The path and file name of this file MUST be "PP\index_counter\counter".

This file is specified using the following ABNF grammar:

counter-file = count-value

count-value = 1*DIGIT

count-value: This is an unsigned integer that specifies how many times this index partition has

been indexed. The field is encoded as an ASCII string.

2.5.6 Index Counter Stamp File

The path and file name of this file MUST be "PP\index_counter\stamp.txt".

This file is specified using the following ABNF grammar:

indexsetgeneration = timestamp

timestamp = 1*DIGIT

timestamp: This is a string that specifies the time of creation for the index counter file, as specified
in section 2.5.5. The timestamp represents the number of seconds after 1970-01-01T00:00:00UTC.

The field is encoded as an ASCII string.

85 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

3 Structure Examples

3.1 Full Index Directory Structure

The following lists all the files present in the file data index, where the top directory, here
symbolized by "." is the directory PP\index_TTTT\index_data.

.\index.cf

.\IndexedOK

.\indextune.cf

.\merged\.findex_done

.\merged\anchortext\complete\boolocc.bdat

.\merged\anchortext\complete\boolocc.bidx

.\merged\anchortext\complete\boolocc.ccnt

.\merged\anchortext\complete\boolocc.dat.ccnt

.\merged\anchortext\complete\boolocc.dat.compressed

.\merged\anchortext\dictionary.pcdat

.\merged\anchortext\dictionary.pcidx

.\merged\anchortext\dictionary.pdat2

.\merged\anchortext\dictionary.pidx2

.\merged\anchortext\dictionary.shash

.\merged\anchortext\dictionary.wncidx

.\merged\anchortext\dictionary.wnidx2

.\merged\assocqueries\complete\boolocc.bdat

.\merged\assocqueries\complete\boolocc.bidx

.\merged\assocqueries\complete\boolocc.ccnt

.\merged\assocqueries\complete\boolocc.dat.ccnt

.\merged\assocqueries\complete\boolocc.dat.compressed

.\merged\assocqueries\dictionary.pcdat

.\merged\assocqueries\dictionary.pcidx

.\merged\assocqueries\dictionary.pdat2

.\merged\assocqueries\dictionary.pidx2

.\merged\assocqueries\dictionary.shash

86 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\assocqueries\dictionary.wncidx

.\merged\assocqueries\dictionary.wnidx2

.\merged\attributevector-indexing.txt

.\merged\attributevector.txt

.\merged\batvcrawltime.dat

.\merged\batvcrawltime.eidx

.\merged\batvcrawltime.info

.\merged\batvcrawltime.sudat

.\merged\batvcreated.dat

.\merged\batvcreated.eidx

.\merged\batvcreated.info

.\merged\batvcreated.sudat

.\merged\batvdocdatetime.dat

.\merged\batvdocdatetime.eidx

.\merged\batvdocdatetime.info

.\merged\batvdocdatetime.sudat

.\merged\batvdocrank.dat

.\merged\batvdocrank.eidx

.\merged\batvdocrank.info

.\merged\batvdocrank.sudat

.\merged\batvlastmodifiedtime.dat

.\merged\batvlastmodifiedtime.eidx

.\merged\batvlastmodifiedtime.info

.\merged\batvlastmodifiedtime.sudat

.\merged\batvprocessingtime.dat

.\merged\batvprocessingtime.eidx

.\merged\batvprocessingtime.info

.\merged\batvprocessingtime.sudat

.\merged\batvsiterank.dat

.\merged\batvsiterank.eidx

87 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\batvsiterank.info

.\merged\batvsiterank.sudat

.\merged\batvsize.dat

.\merged\batvsize.eidx

.\merged\batvsize.info

.\merged\batvsize.sudat

.\merged\batvtitle.dat

.\merged\batvtitle.eidx

.\merged\batvtitle.info

.\merged\batvtitle.sudat

.\merged\batvurldepthrank.dat

.\merged\batvurldepthrank.eidx

.\merged\batvurldepthrank.info

.\merged\batvurldepthrank.sudat

.\merged\bavnauthor.dat

.\merged\bavnauthor.eidx

.\merged\bavnauthor.idx

.\merged\bavnauthor.info

.\merged\bavnauthor.sudat

.\merged\bavncompanies.dat

.\merged\bavncompanies.eidx

.\merged\bavncompanies.idx

.\merged\bavncompanies.info

.\merged\bavncompanies.sudat

.\merged\bavnconcepts.dat

.\merged\bavnconcepts.eidx

.\merged\bavnconcepts.idx

.\merged\bavnconcepts.info

.\merged\bavnconcepts.sudat

.\merged\bavndocdatetime.dat

88 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\bavndocdatetime.eidx

.\merged\bavndocdatetime.idx

.\merged\bavndocdatetime.info

.\merged\bavndocdatetime.sudat

.\merged\bavnemails.dat

.\merged\bavnemails.eidx

.\merged\bavnemails.idx

.\merged\bavnemails.info

.\merged\bavnemails.sudat

.\merged\bavnformat.dat

.\merged\bavnformat.eidx

.\merged\bavnformat.idx

.\merged\bavnformat.info

.\merged\bavnformat.sudat

.\merged\bavnlanguages.dat

.\merged\bavnlanguages.eidx

.\merged\bavnlanguages.idx

.\merged\bavnlanguages.info

.\merged\bavnlanguages.sudat

.\merged\bavnlocations.dat

.\merged\bavnlocations.eidx

.\merged\bavnlocations.idx

.\merged\bavnlocations.info

.\merged\bavnlocations.sudat

.\merged\bavnpersonnames.dat

.\merged\bavnpersonnames.eidx

.\merged\bavnpersonnames.idx

.\merged\bavnpersonnames.info

.\merged\bavnpersonnames.sudat

.\merged\bavnsize.dat

89 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\bavnsize.eidx

.\merged\bavnsize.idx

.\merged\bavnsize.info

.\merged\bavnsize.sudat

.\merged\bcatcontent\bidxcontentlvl1\boolocc.bdat

.\merged\bcatcontent\bidxcontentlvl1\boolocc.bidx

.\merged\bcatcontent\bidxcontentlvl1\boolocc.ccnt

.\merged\bcatcontent\bidxcontentlvl1\boolocc.dat.ccnt

.\merged\bcatcontent\bidxcontentlvl1\boolocc.dat.compressed

.\merged\bcatcontent\bidxcontentlvl1\posocc.ccnt

.\merged\bcatcontent\bidxcontentlvl1\posocc.counts.ccnt

.\merged\bcatcontent\bidxcontentlvl1\posocc.dat.compressed

.\merged\bcatcontent\bidxcontentlvl2\boolocc.bdat

.\merged\bcatcontent\bidxcontentlvl2\boolocc.bidx

.\merged\bcatcontent\bidxcontentlvl2\boolocc.ccnt

.\merged\bcatcontent\bidxcontentlvl2\boolocc.dat.ccnt

.\merged\bcatcontent\bidxcontentlvl2\boolocc.dat.compressed

.\merged\bcatcontent\bidxcontentlvl2\posocc.ccnt

.\merged\bcatcontent\bidxcontentlvl2\posocc.counts.ccnt

.\merged\bcatcontent\bidxcontentlvl2\posocc.dat.compressed

.\merged\bcatcontent\bidxcontentlvl3\boolocc.bdat

.\merged\bcatcontent\bidxcontentlvl3\boolocc.bidx

.\merged\bcatcontent\bidxcontentlvl3\boolocc.ccnt

.\merged\bcatcontent\bidxcontentlvl3\boolocc.dat.ccnt

.\merged\bcatcontent\bidxcontentlvl3\boolocc.dat.compressed

.\merged\bcatcontent\bidxcontentlvl3\posocc.ccnt

.\merged\bcatcontent\bidxcontentlvl3\posocc.counts.ccnt

.\merged\bcatcontent\bidxcontentlvl3\posocc.dat.compressed

.\merged\bcatcontent\bidxcontentlvl4\boolocc.bdat

.\merged\bcatcontent\bidxcontentlvl4\boolocc.bidx

90 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\bcatcontent\bidxcontentlvl4\boolocc.ccnt

.\merged\bcatcontent\bidxcontentlvl4\boolocc.dat.ccnt

.\merged\bcatcontent\bidxcontentlvl4\boolocc.dat.compressed

.\merged\bcatcontent\bidxcontentlvl4\posocc.ccnt

.\merged\bcatcontent\bidxcontentlvl4\posocc.counts.ccnt

.\merged\bcatcontent\bidxcontentlvl4\posocc.dat.compressed

.\merged\bcatcontent\dictionary.pcdat

.\merged\bcatcontent\dictionary.pcidx

.\merged\bcatcontent\dictionary.pdat2

.\merged\bcatcontent\dictionary.pidx2

.\merged\bcatcontent\dictionary.shash

.\merged\bcatcontent\dictionary.wncidx

.\merged\bcatcontent\dictionary.wnidx2

.\merged\bi1\bidxcrawltime\intocc.bdat

.\merged\bi1\bidxcrawltime\intocc.bgtidx

.\merged\bi1\bidxcrawltime\intocc.bidx

.\merged\bi1\bidxcrawltime\intocc.bltidx

.\merged\bi1\bidxcrawltime\intocc.buidx

.\merged\bi1\bidxcrawltime\intocc.dat

.\merged\bi1\bidxcrawltime\intocc.idx

.\merged\bi1\bidxcrawltime\intocc.limits

.\merged\bi1\bidxcrawltime\intocc.spidx

.\merged\bi1\bidxcrawltime\intocc.spspidx

.\merged\bi1\bidxcreated\intocc.bdat

.\merged\bi1\bidxcreated\intocc.bgtidx

.\merged\bi1\bidxcreated\intocc.bidx

.\merged\bi1\bidxcreated\intocc.bltidx

.\merged\bi1\bidxcreated\intocc.buidx

.\merged\bi1\bidxcreated\intocc.dat

.\merged\bi1\bidxcreated\intocc.idx

91 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\bi1\bidxcreated\intocc.limits

.\merged\bi1\bidxcreated\intocc.spidx

.\merged\bi1\bidxcreated\intocc.spspidx

.\merged\bi1\bidxdocdatetime\intocc.bdat

.\merged\bi1\bidxdocdatetime\intocc.bgtidx

.\merged\bi1\bidxdocdatetime\intocc.bidx

.\merged\bi1\bidxdocdatetime\intocc.bltidx

.\merged\bi1\bidxdocdatetime\intocc.buidx

.\merged\bi1\bidxdocdatetime\intocc.dat

.\merged\bi1\bidxdocdatetime\intocc.idx

.\merged\bi1\bidxdocdatetime\intocc.limits

.\merged\bi1\bidxdocdatetime\intocc.spidx

.\merged\bi1\bidxdocdatetime\intocc.spspidx

.\merged\bi1\bidxdocrank\intocc.bdat

.\merged\bi1\bidxdocrank\intocc.bgtidx

.\merged\bi1\bidxdocrank\intocc.bidx

.\merged\bi1\bidxdocrank\intocc.bltidx

.\merged\bi1\bidxdocrank\intocc.buidx

.\merged\bi1\bidxdocrank\intocc.dat

.\merged\bi1\bidxdocrank\intocc.idx

.\merged\bi1\bidxdocrank\intocc.limits

.\merged\bi1\bidxdocrank\intocc.spidx

.\merged\bi1\bidxdocrank\intocc.spspidx

.\merged\bi1\bidxlastmodifiedtime\intocc.bdat

.\merged\bi1\bidxlastmodifiedtime\intocc.bgtidx

.\merged\bi1\bidxlastmodifiedtime\intocc.bidx

.\merged\bi1\bidxlastmodifiedtime\intocc.bltidx

.\merged\bi1\bidxlastmodifiedtime\intocc.buidx

.\merged\bi1\bidxlastmodifiedtime\intocc.dat

.\merged\bi1\bidxlastmodifiedtime\intocc.idx

92 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\bi1\bidxlastmodifiedtime\intocc.limits

.\merged\bi1\bidxlastmodifiedtime\intocc.spidx

.\merged\bi1\bidxlastmodifiedtime\intocc.spspidx

.\merged\bi1\bidxprocessingtime\intocc.bdat

.\merged\bi1\bidxprocessingtime\intocc.bgtidx

.\merged\bi1\bidxprocessingtime\intocc.bidx

.\merged\bi1\bidxprocessingtime\intocc.bltidx

.\merged\bi1\bidxprocessingtime\intocc.buidx

.\merged\bi1\bidxprocessingtime\intocc.dat

.\merged\bi1\bidxprocessingtime\intocc.idx

.\merged\bi1\bidxprocessingtime\intocc.limits

.\merged\bi1\bidxprocessingtime\intocc.spidx

.\merged\bi1\bidxprocessingtime\intocc.spspidx

.\merged\bi1\bidxsiterank\intocc.bdat

.\merged\bi1\bidxsiterank\intocc.bgtidx

.\merged\bi1\bidxsiterank\intocc.bidx

.\merged\bi1\bidxsiterank\intocc.bltidx

.\merged\bi1\bidxsiterank\intocc.buidx

.\merged\bi1\bidxsiterank\intocc.dat

.\merged\bi1\bidxsiterank\intocc.idx

.\merged\bi1\bidxsiterank\intocc.limits

.\merged\bi1\bidxsiterank\intocc.spidx

.\merged\bi1\bidxsiterank\intocc.spspidx

.\merged\bi1\bidxsize\intocc.bdat

.\merged\bi1\bidxsize\intocc.bgtidx

.\merged\bi1\bidxsize\intocc.bidx

.\merged\bi1\bidxsize\intocc.bltidx

.\merged\bi1\bidxsize\intocc.buidx

.\merged\bi1\bidxsize\intocc.dat

.\merged\bi1\bidxsize\intocc.idx

93 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\bi1\bidxsize\intocc.limits

.\merged\bi1\bidxsize\intocc.spidx

.\merged\bi1\bidxsize\intocc.spspidx

.\merged\bi1\bidxurldepthrank\intocc.bdat

.\merged\bi1\bidxurldepthrank\intocc.bgtidx

.\merged\bi1\bidxurldepthrank\intocc.bidx

.\merged\bi1\bidxurldepthrank\intocc.bltidx

.\merged\bi1\bidxurldepthrank\intocc.buidx

.\merged\bi1\bidxurldepthrank\intocc.dat

.\merged\bi1\bidxurldepthrank\intocc.idx

.\merged\bi1\bidxurldepthrank\intocc.limits

.\merged\bi1\bidxurldepthrank\intocc.spidx

.\merged\bi1\bidxurldepthrank\intocc.spspidx

.\merged\docsum.dat

.\merged\docsum.idx

.\merged\docsum.overflow

.\merged\docsum.qcnt

.\merged\msynthcat\all\boolocc.bdat

.\merged\msynthcat\all\boolocc.bidx

.\merged\msynthcat\all\boolocc.ccnt

.\merged\msynthcat\all\boolocc.dat.ccnt

.\merged\msynthcat\all\boolocc.dat.compressed

.\merged\msynthcat\all\posocc.ccnt

.\merged\msynthcat\all\posocc.counts.ccnt

.\merged\msynthcat\all\posocc.dat.compressed

.\merged\msynthcat\dictionary.pcdat

.\merged\msynthcat\dictionary.pcidx

.\merged\msynthcat\dictionary.pdat2

.\merged\msynthcat\dictionary.pidx2

.\merged\msynthcat\dictionary.shash

94 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\msynthcat\dictionary.wncidx

.\merged\msynthcat\dictionary.wnidx2

.\merged\[a]_bscpxml\all\boolocc.bdat

.\merged\[a]_bscpxml\all\boolocc.bidx

.\merged\[a]_bscpxml\all\boolocc.ccnt

.\merged\[a]_bscpxml\all\boolocc.dat.ccnt

.\merged\[a]_bscpxml\all\boolocc.dat.compressed

.\merged\[a]_bscpxml\all\posocc.ccnt

.\merged\[a]_bscpxml\all\posocc.counts.ccnt

.\merged\[a]_bscpxml\all\posocc.dat.compressed

.\merged\[a]_bscpxml\dictionary.pcdat

.\merged\[a]_bscpxml\dictionary.pcidx

.\merged\[a]_bscpxml\dictionary.pdat2

.\merged\[a]_bscpxml\dictionary.pidx2

.\merged\[a]_bscpxml\dictionary.shash

.\merged\[a]_bscpxml\dictionary.wncidx

.\merged\[a]_bscpxml\dictionary.wnidx2

.\merged\[c]_bscpxml\all\boolocc.bdat

.\merged\[c]_bscpxml\all\boolocc.bidx

.\merged\[c]_bscpxml\all\boolocc.ccnt

.\merged\[c]_bscpxml\all\boolocc.dat.ccnt

.\merged\[c]_bscpxml\all\boolocc.dat.compressed

.\merged\[c]_bscpxml\all\posocc.ccnt

.\merged\[c]_bscpxml\all\posocc.counts.ccnt

.\merged\[c]_bscpxml\all\posocc.dat.compressed

.\merged\[c]_bscpxml\dictionary.pcdat

.\merged\[c]_bscpxml\dictionary.pcidx

.\merged\[c]_bscpxml\dictionary.pdat2

.\merged\[c]_bscpxml\dictionary.pidx2

.\merged\[c]_bscpxml\dictionary.shash

95 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\[c]_bscpxml\dictionary.wncidx

.\merged\[c]_bscpxml\dictionary.wnidx2

.\merged\[n]_bscpxml\datetime\boolocc.bdat

.\merged\[n]_bscpxml\datetime\boolocc.bidx

.\merged\[n]_bscpxml\datetime\boolocc.ccnt

.\merged\[n]_bscpxml\datetime\boolocc.dat.ccnt

.\merged\[n]_bscpxml\datetime\boolocc.dat.compressed

.\merged\[n]_bscpxml\datetime\posocc.ccnt

.\merged\[n]_bscpxml\datetime\posocc.counts.ccnt

.\merged\[n]_bscpxml\datetime\posocc.dat.compressed

.\merged\[n]_bscpxml\dictionary.pcdat

.\merged\[n]_bscpxml\dictionary.pcidx

.\merged\[n]_bscpxml\dictionary.pdat2

.\merged\[n]_bscpxml\dictionary.pidx2

.\merged\[n]_bscpxml\dictionary.shash

.\merged\[n]_bscpxml\dictionary.wncidx

.\merged\[n]_bscpxml\dictionary.wnidx2

.\merged\[n]_bscpxml\double\boolocc.bdat

.\merged\[n]_bscpxml\double\boolocc.bidx

.\merged\[n]_bscpxml\double\boolocc.ccnt

.\merged\[n]_bscpxml\double\boolocc.dat.ccnt

.\merged\[n]_bscpxml\double\boolocc.dat.compressed

.\merged\[n]_bscpxml\double\posocc.ccnt

.\merged\[n]_bscpxml\double\posocc.counts.ccnt

.\merged\[n]_bscpxml\double\posocc.dat.compressed

.\merged\[n]_bscpxml\float\boolocc.bdat

.\merged\[n]_bscpxml\float\boolocc.bidx

.\merged\[n]_bscpxml\float\boolocc.ccnt

.\merged\[n]_bscpxml\float\boolocc.dat.ccnt

.\merged\[n]_bscpxml\float\boolocc.dat.compressed

96 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\merged\[n]_bscpxml\float\posocc.ccnt

.\merged\[n]_bscpxml\float\posocc.counts.ccnt

.\merged\[n]_bscpxml\float\posocc.dat.compressed

.\merged\[n]_bscpxml\int32\boolocc.bdat

.\merged\[n]_bscpxml\int32\boolocc.bidx

.\merged\[n]_bscpxml\int32\boolocc.ccnt

.\merged\[n]_bscpxml\int32\boolocc.dat.ccnt

.\merged\[n]_bscpxml\int32\boolocc.dat.compressed

.\merged\[n]_bscpxml\int32\posocc.ccnt

.\merged\[n]_bscpxml\int32\posocc.counts.ccnt

.\merged\[n]_bscpxml\int32\posocc.dat.compressed

.\merged\[s]_bscpxml\all\boolocc.bdat

.\merged\[s]_bscpxml\all\boolocc.bidx

.\merged\[s]_bscpxml\all\boolocc.ccnt

.\merged\[s]_bscpxml\all\boolocc.dat.ccnt

.\merged\[s]_bscpxml\all\boolocc.dat.compressed

.\merged\[s]_bscpxml\all\posocc.ccnt

.\merged\[s]_bscpxml\all\posocc.counts.ccnt

.\merged\[s]_bscpxml\all\posocc.dat.compressed

.\merged\[s]_bscpxml\dictionary.pcdat

.\merged\[s]_bscpxml\dictionary.pcidx

.\merged\[s]_bscpxml\dictionary.pdat2

.\merged\[s]_bscpxml\dictionary.pidx2

.\merged\[s]_bscpxml\dictionary.shash

.\merged\[s]_bscpxml\dictionary.wncidx

.\merged\[s]_bscpxml\dictionary.wnidx2

.\range

.\rank.cf

.\stamp.txt

.\summary.cf

97 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

.\summary.map

.\urlmap.txt

.\version.txt

3.2 URL Map File

The following table shows the content of this file when two items are indexed. For information about
the format description, see section 2.1.10.

Content Explanation

d4f345bff288a95c0c8cc2dc456cb4dc_sp 0

internalid = d4f345bff288a95c0c8cc2dc456cb4dc

collection-name = "sp"

doc-id = 0

13ba8e5cd93d36f2df09ebafd2b77e88_sp 1 internalid = 13ba8e5cd93d36f2df09ebafd2b77e88

collection-name = "sp"

doc-id = 1

3.3 Attribute Vector Data File

The attribute vector data file format is described in section 2.1.13.1. The file is a sortable field
attribute vector that contains the dates for indexing two items, as shown in the following table.

Content

(hexadecimal) Explanation

802e 9b80

0ba5 1588

00d3 5a88

0ba5 1588

Ticks calculated as unsigned 64-bit integer (first 8 bytes):

9805925232490000000. In seconds: 980592523249. Dividing by

(24x366x60x60) gives the number of years after -1/1/29000:31009 years,

therefore year 2009. Proceeding gives 156 days which means 5. June, 12

hours and 49 minutes. The second date time (00d3 5a88 0ba5 1588) is

converted in the same manner.

3.4 Attribute Vector Enum File

This is a binary file, in which 8 bytes and 8 bytes form unsigned 64-bit integer numbers, as shown in

the following table. For more information about the file format description, see section 2.1.13.2.

Content Explanation

00000000

01000000

Entry 0 in sorted unique data file is entry number 0 in byte-sorted order.

Entry 1 in sorted unique data file is entry number 1 in byte-sorted order.

3.5 Boolean Occurrences Bit-vector File

This is a binary file; for information about the file description, see section 2.1.14.2.1. There are only
two items. For each token in the dictionary, there is a bit-vector 32 bits in length. Only the two first
bits are used. If the file is written as a series of 4-byte unsigned integers, there is one decimal value
for each token in the dictionary. The value is 1 if the token exists in item 1, 2 if the token exists in

item 2, and 3 if the token exists in both items.

98 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

03

03

01

01

01

01

01

01

01

02

03

02

02

01

01

03

02

02

02

02

01

01

02

02

03

03

02

02

02

02

03

01

01

3.6 Boolean Occurrences Bit Compressed Count File

The following file format is described in section 2.1.14.2.3. First there are six unsigned 32-bit
integers, followed by compressed count values, one for each token in the dictionary. All the values
are annotated with hexadecimal values, and the unsigned integer decimal value for the first six

uncompressed unsigned integers. For the compressed count values, a bit sequence is used, as
shown in the leftmost column. The decompressed value of the bit sequence is shown following the
"Count value" text.

0x1 0x0 0x0 0x0 Header Version 1

0x10 0x0 0x0 0x0 Header Version Length 16

0x21 0x0 0x0 0x0 Nr Occurrences 33

0x8 0x0 0x0 0x0 Compression Method 8

0x2 0x0 0x0 0x0 K 2

0xfc 0x3 0x0 0x0 Max 1020

11001 Count value 2

11001 Count value 2

10 Count value 1

10 Count value 1

10 Count value 1

10 Count value 1

10 Count value 1

10 Count value 1

99 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

10 Count value 1

10 Count value 1

11001 Count value 2

10 Count value 1

10 Count value 1

10 Count value 1

10 Count value 1

11001 Count value 2

10 Count value 1

10 Count value 1

10 Count value 1

10 Count value 1

10 Count value 1

10 Count value 1

10 Count value 1

10 Count value 1

11001 Count value 2

11001 Count value 2

10 Count value 1

10 Count value 1

10 Count value 1

10 Count value 1

11001 Count value 2

10 Count value 1

10 Count value 1

0 Count value 0

0 Count value 0

0 Count value 0

0 Count value 0

0 Count value 0

0 Count value 0

0 Count value 0

0 Count value 0

0 Count value 0

3.7 Boolean Occurrences Compressed Data File

The following file format is described in section 2.1.14.2.5. The information consumed is on the left,
followed by the explanation on the right and sometimes a value that is processed using the
information on the left. For the header entries, that is, the entries prefixed with 0x, the information
in the left column is written in hexadecimal. For the compressed information, the information is

written as a bit sequence.

There are two items in the following example files. Each token has a set of entries in this file, one
for each item where it is present. The beginning of a new token is seen where the Boolean New
Entry is set to true.

0x1 0x0 0x0 0x0 Header version1

0x0 0x0 0x0 0x0 Header length 0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000010 first occurrence pos

00000001 number of occurrences

100 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0000001 If New Entry:doc-id else difference to previous:0

0 New Entry ?

1 contexts map present

0 external context count present

0 first occurrence present

0 number occurrences present

00000000 context map

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000010 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

0 New Entry ?

1 contexts map present

0 external context count present

0 first occurrence present

0 number occurrences present

00000000 context map

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000011 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000011 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000100 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000100 first occurrence pos

00000001 number of occurrences

101 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000100 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000100 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00001000 context map

11111111 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00001000 context map

11111111 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00001000 context map

11111111 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

0 New Entry ?

0 contexts map present

0 external context count present

0 first occurrence present

0 number occurrences present

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000010 first occurrence pos

102 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000010 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000001 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000001 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00001000 context map

11111111 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

0 New Entry ?

0 contexts map present

0 external context count present

0 first occurrence present

0 number occurrences present

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000100 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

103 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

00000100 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000100 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000100 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

0 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

0 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000011 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000011 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

104 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

1 number occurrences present

00001000 context map

11111111 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

0 New Entry ?

0 contexts map present

0 external context count present

0 first occurrence present

0 number occurrences present

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00001000 context map

11111111 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

0 New Entry ?

0 contexts map present

0 external context count present

0 first occurrence present

0 number occurrences present

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000001 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000001 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

0 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

0 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 first occurrence pos

00000001 number of occurrences

105 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00001000 context map

11111111 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

0 New Entry ?

0 contexts map present

0 external context count present

0 first occurrence present

0 number occurrences present

0000010 If New Entry:doc-id else difference to previous:1

1 New Entry ?

0 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

0 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 first occurrence pos

00000001 number of occurrences

0000001 If New Entry:doc-id else difference to previous:0

1 New Entry ?

1 contexts map present

0 external context count present

1 first occurrence present

1 number occurrences present

00000001 context map

00000001 first occurrence pos

00000001 number of occurrences

0000010 If New Entry:doc-id else difference to previous:1

3.8 Position Occurrences Compressed Data File

The following is an annotated example of the position occurrences data file. The information
consumed is on the left, followed by the explanation on the right, and sometimes a field that is
processed using the information on the left. For the header entries the left is written in hexadecimal,
for the compressed information, the information is written as bit sequences, in which the bit

sequences are ordered. The file format is described in section 2.1.14.3.3.

There are two items in the collection. Each token has a set of entries in this file, one for each item
where it is present. The header and positional information for the first token only are provided.

0x1 0x0 0x0 0x0 Header version 1

0x4 0x0 0x0 0x0 Header version length 4

0x0 0x0 0x0 0x0 MCC 0

00000000000000000000001 Posocc FirstDocId 0

106 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

000000011 First position 2

0 No context

01 Next doc id follows

00000001 Delta DocId 1

000000001 First position 0

0 No context

00 No more docs for this entry

00000000000000000000001 Posocc FirstDocId 0

000000011 First position 2

0 No context

01 Next doc id follows

00000001 Delta DocId 1

000000001 First position 0

0 No context

00 No more docs for this entry

00000000000000000000001 Posocc FirstDocId 0

000000100 First position 3

0 No context

00 No more docs for this entry

3.9 Dictionary Paged Data File

The example described in the following subsections is generated using two items with a total of 33
tokens. The example is annotated, and also split into different regions. For this example there exists
only one file page. The information consumed is on the left, followed by a textual comment on the

type of information, and sometimes followed by the converted value. The file format is described in
section 2.1.14.4.3.

3.9.1 Page Header

The following is an annotated example of a page header region.

0x0 0x0 0x0 0x0 First Num = 0

0x14 0x0 0x0 0x0 First WordOffset =20

0x21 0x0 Word Count = 33

0x7 0x0 Sparse size = 7

0x3d 0x0 Between size = 61

0x0 0x0 Not used

3.9.2 Sparse Region

The following is an annotated example of the sparse region of the file. There are 33 tokens in the

dictionary. The number of sparse entries is calculated (1+floor(33/16)) = 3, so there are three

sparse entries, for each of which there is possible data for four property indexes.

0 Sparse coded acc num docs=0

0 Sparse coded boolocc offset=0

1000101011111 Sparse coded posocc offset=96

0 Sparse coded acc num docs=0

0 Sparse coded boolocc offset=0

1000101011111 Sparse coded posocc offset=96

0 Sparse coded acc num docs=0

0 Sparse coded boolocc offset=0

1000101011111 Sparse coded posocc offset=96

0 Sparse coded acc num docs=0

107 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0 Sparse coded boolocc offset=0

1000101011111 Sparse coded posocc offset=96

1 Sparse Entry present

0 Sparse rice compressed information follows

101101 Sparse compressed number of docs 20

100010000001 Sparse compressed boolocc offset=640

100010011111 Sparse posocc offset=670

1 Sparse Entry present

0 Sparse rice compressed information follows

0111 Sparse compressed number of docs 6

0010101001 Sparse compressed boolocc offset=168

0011010011 Sparse posocc offset=210

0 No sparse entry exists

0 No sparse entry exists

01110110111 Between offset information=950

1 Sparse Entry present

0 Sparse rice compressed information follows

101100 Sparse compressed number of docs 19

100000111101 Sparse compressed boolocc offset=572

100010001011 Sparse posocc offset=650

1 Sparse Entry present

0 Sparse rice compressed information follows

0111 Sparse compressed number of docs 6

0010010001 Sparse compressed boolocc offset=144

0011000100 Sparse posocc offset=195

0 No sparse entry exists

0 No sparse entry exists

3.9.3 BETWEEN Region

The following is an excerpt from the BETWEEN region, specifically, the entries for the three first
tokens in the dictionary.

01110101011 Between offset information=938

1 Between entry present

1 Between coded entry follows

11001 Between coded acc num docs=2

00111001 Between coded boolocc offset=56

0111000 Between coded posocc offset=55

0 No Between entry present

0 No Between entry present

0 No Between entry present

110000101100110000111011010000111 Normalized document count=10000000

1 Between entry present

1 Between coded entry follows

11001 Between coded acc num docs=2

00111001 Between coded boolocc offset=56

0111000 Between coded posocc offset=55

0 No Between entry present

0 No Between entry present

0 No Between entry present

110000101100110000111011010000111 Normalized document count=10000000

1 Between entry present

0 Between rice-compressed entry follows

00100101 Between compressed posocc offset=36

0100100 Between compressed posocc offset=35

108 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0 No Between entry present

0 No Between entry present

0 No Between entry present

110000101010011000010101101000111 Normalized document count=5000000

3.9.4 Word Offsets

There are two fewer token offsets for one page than there are tokens. The token offsets are the
number of bytes from the beginning of the token region to the LCP entry of the token. The first

token for the page has no LCP entry, while the second token has offset 0. So the first offset
described is for token number 2 on the current file page.

0x4 0x0 Token offset 4

0x10 0x0 Token offset 16

0x13 0x0 Token offset 19

0x1a 0x0 Token offset 26

0x1f 0x0 Token offset 31

0x22 0x0 Token offset 34

0x26 0x0 Token offset 38

0x2d 0x0 Token offset 45

0x34 0x0 Token offset 52

0x3b 0x0 Token offset 59

0x40 0x0 Token offset 64

0x45 0x0 Token offset 69

0x48 0x0 Token offset 72

0x4c 0x0 Token offset 76

0x58 0x0 Token offset 88

0x5f 0x0 Token offset 95

0x64 0x0 Token offset 100

0x6b 0x0 Token offset 107

0x6f 0x0 Token offset 111

0x76 0x0 Token offset 118

0x7d 0x0 Token offset 125

0x83 0x0 Token offset 131

0x86 0x0 Token offset 134

0x8c 0x0 Token offset 140

0x94 0x0 Token offset 148

0x9b 0x0 Token offset 155

0x9e 0x0 Token offset 158

0xa4 0x0 Token offset 164

0xa8 0x0 Token offset 168

0xaf 0x0 Token offset 175

0xb6 0x0 Token offset 182

3.9.5 LCP Entries

This part of the file follows the token entries and the token offsets in the file.

0x0 0x61 0x54 0x0 LCP entry aT prefix=0

0x0 0x62 0x65 0x61 0x74 0x75 0x69 0x66 0x75 0x6c 0x4c 0x0 LCP entry beatuifulL prefix=0

0x9 0x54 0x0 LCP entry T prefix=9

0x0 0x63 0x69 0x74 0x79 0x4c 0x0 LCP entry cityL prefix=0

0x4 0x4c 0xc7 0x82 0x0 LCP entry LÃé prefix=4

0x4 0x54 0x0 LCP entry T prefix=4

109 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0x5 0xc7 0x82 0x0 LCP entry Ãé prefix=5

0x0 0x64 0x6f 0x63 0x31 0x54 0x0 LCP entry doc1T prefix=0

0x0 0x64 0x6f 0x63 0x32 0x54 0x0 LCP entry doc2T prefix=0

0x0 0x68 0x74 0x74 0x70 0x54 0x0 LCP entry httpT prefix=0

0x0 0x69 0x6e 0x4c 0x0 LCP entry inL prefix=0

0x0 0x69 0x6e 0x54 0x0 LCP entry inT prefix=0

0x2 0x4c 0x0 LCP entry L prefix=2

0x1 0x73 0x54 0x0 LCP entry sT prefix=1

0x0 0x6c 0x6f 0x63 0x61 0x6c 0x68 0x6f 0x73 0x74 0x54 0x0 LCP entry localhostT prefix=0

0x0 0x70 0x61 0x72 0x6b 0x4c 0x0 LCP entry parkL prefix=0

0x4 0x4c 0xc7 0x82 0x0 LCP entry LÃé prefix=4

0x0 0x70 0x61 0x72 0x6b 0x54 0x0 LCP entry parkT prefix=0

0x5 0xc7 0x82 0x0 LCP entry Ãé prefix=5

0x0 0x72 0x6f 0x6d 0x61 0x4c 0x0 LCP entry romaL prefix=0

0x0 0x72 0x6f 0x6d 0x61 0x54 0x0 LCP entry romaT prefix=0

0x0 0x74 0x68 0x65 0x4c 0x0 LCP entry theL prefix=0

0x3 0x54 0x0 LCP entry T prefix=3

0x0 0x74 0x78 0x74 0x54 0x0 LCP entry txtT prefix=0

0x0 0x74 0x78 0x74 0x54 0xc7 0x82 0x0 LCP entry txtTÃé prefix=0

0x0 0x77 0x61 0x6c 0x6b 0x4c 0x0 LCP entry walkL prefix=0

0x4 0x54 0x0 LCP entry T prefix=4

0x0 0xc7 0x82 0x61 0x4c 0x0 LCP entry ÃéaL prefix=0

0x2 0x61 0x54 0x0 LCP entry aT prefix=2

0x2 0x68 0x74 0x74 0x70 0x54 0x0 LCP entry httpT prefix=2

0x2 0x72 0x6f 0x6d 0x61 0x4c 0x0 LCP entry romaL prefix=2

0x0 0xc7 0x82 0x72 0x6f 0x6d 0x61 0x54 0x0 LCP entry ÃéromaT prefix=0

3.10 Dictionary Paged Index File

This example is generated using two items with a total of 33 tokens. The example is annotated, and
split into different regions. For this example there exists only one file page. The information
consumed is on the left, followed by a text comment on type of data, and sometimes followed by

the converted value. For more information, see section 2.1.14.4.4.

00000111001001000000000101000101 Magic number

0x2 0x0 0x0 0x0 Version 2

0x8 0x0 0x0 0x0 Header length 8

0x1 0x0 Tagtype 1

0x4 0x0 Taglength 4

000 Unused bits

1 Has posocc compressed file

1 Has boolocc compressed filen

0 No phrase index

1 Has posocc

1 Has boolocc

00000000 Unused byte

0x4 0x0 Nr of property indexes 4

0x61 0x4c 0x0 String aL

3.11 Dictionary Sorted Hash File

This example is generated using two items with a total of 33 tokens. The documents that are
indexed are very short and contain the following text:

"Rome is a beautiful city"

110 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

"A walk in the park"

The format is described in section 2.1.14.4.5.

 33

2 2 aL

2 2 aT

1 1 beatuifulL

1 1 beatuifulT

1 1 cityL

1 1 cityLǂ

1 1 cityT

1 1 cityTǂ

1 1 doc1T

1 1 doc2T

2 2 httpT

1 1 inL

1 1 inT

1 1 isL

1 1 isT

2 2 localhostT

1 1 parkL

1 1 parkLǂ

1 1 parkT

1 1 parkTǂ

1 1 romaL

1 1 romaT

1 1 theL

1 1 theT

2 2 txtT

2 2 txtTǂ

1 1 walkL

1 1 walkT

1 1 ǂaL

1 1 ǂaT

2 2 ǂhttpT

1 1 ǂromaL

1 1 ǂromaT

3.12 Integer Occurrences Bit-vector Index File

This example is generated using two items with a total of 33 tokens. The example is annotated, and
split into different regions. For this example there exists one bit-vector index entry. It represents a

range of 20 to 26. It points to the beginning of the integer bitmap data file, so the first (and only)
bit-vector is referenced. The information consumed is on the left, followed by a text comment on the
type of data, and sometimes followed by the converted value. The file format is described in section
2.1.15.4.

0x2 0x0 0x0 0x0 Nr of docs 2

0x1 0x0 0x0 0x0 Nr index entries 1

0x14 0x0 0x0 0x0 0x0 0x0 0x0 0x80 Lower key 20

0x1a 0x0 0x0 0x0 0x0 0x0 0x0 0x80 Higher key 26

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 Integer bitmap data file offset 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 Integer occurrence data file offset 0

0x2 0x0 0x0 0x0 Integer occurrences 2

111 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0x0 0x0 0x0 0x0 4 bytes that are ignored 0

3.13 Integer Occurrences Bit-vector Unique Index File

This example is generated using two items with a total of 33 tokens. The example is annotated, and
split into different regions. For this example there is only one bit-vector, and therefore one entry in
this file. The bit-vector represents a value range from 20 to 26, so the low integer key is 20. The
information consumed is on the left, followed by a text comment on the type of data, and
sometimes followed by the converted value. The format is described in section 2.1.15.6.

0x14 0x0 0x0 0x0 0x0 0x0 0x0 0x80 Low integer key 20

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 Integer bit-vector index offset 0

3.14 Integer Occurrences Data File

This example is generated using two items with a total of 33 tokens. The example is annotated, and
split into different regions. There are two items; each item has one instance of the current numeric

field. For more information, see integer occurrence index file. The information consumed is on the
left, followed by a text comment on the type of data, and sometimes followed by the converted
value. The file format is described in section 2.1.15.7.

0x1 0x0 0x0 0x0 Item Identifier 1

0x0 0x0 0x0 0x0 Item Identifier 0

3.15 Integer Occurrences Index File

This example is generated using two items with a total of 33 tokens. There are two entries, one for
the value 20, and one for the value 26. The offset into the integer occurrence data file for the first
entry is 0, for the second entry it is 1. In the integer occurrences data file, the first entry has item
identifier 1, therefore the item with item identifier 1 has an instance of this numeric field that

contains the value 20. Equally, item identifier 0 has an occurrence of this numeric field with the
value 26. The information consumed is on the left, followed by a text comment on the type of data,

and sometimes followed by the converted value. The file format is described in section 2.1.15.8.

0x14 0x0 0x0 0x0 0x0 0x0 0x0 0x80 Integer value 20

0x0 0x0 0x0 0x0 4 bytes to be ignored

0x1 0x0 0x0 0x0 Nr of occurrences 1

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 Offset into intocc.dat file 0

0x1a 0x0 0x0 0x0 0x0 0x0 0x0 0x80 Integer value 26

0x0 0x0 0x0 0x0 4 bytes to be ignored

0x1 0x0 0x0 0x0 Nr of occurrences 1

0x1 0x0 0x0 0x0 0x0 0x0 0x0 0x0 Offset into intocc.dat file 1

3.16 Document Summary Data File

This example is generated using two items with a total of 33 tokens. The information consumed is

on the left, followed by a text comment on type of data, and sometimes followed by the converted
value. The file format is described in section 2.1.16.2.

For the following example, it is assumed that the document summary class has the following fields:

112 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

field internalid type string

field contentid type string

field contentids type string

This means that the document summary following the initial document summary class integer
consists of three strings.

0x0 0x0 0x0 0x0 Document summary class 0

0x23 0x0 String length 35

0x64 0x34 0x66 0x33 0x34 0x35 0x62 0x66 0x66 0x32 0x38 0x38 0x61 0x39 0x35 0x63 0x30 0x63

0x38 0x63 0x63 0x32 0x64 0x63 0x34 0x35 0x36 0x63 0x62 0x34 0x64 0x63 0x5f 0x73 0x70 String

d4f345bff288a95c0c8cc2dc456cb4dc_sp

0x19 0x0 String length 25

0x68 0x74 0x74 0x70 0x3a 0x2f 0x2f 0x6c 0x6f 0x63 0x61 0x6c 0x68 0x6f 0x73 0x74 0x2f 0x64

0x6f 0x63 0x31 0x2e 0x74 0x78 0x74 String http://localhost/doc1.txt

0x19 0x0 String length 25

0x68 0x74 0x74 0x70 0x3a 0x2f 0x2f 0x6c 0x6f 0x63 0x61 0x6c 0x68 0x6f 0x73 0x74 0x2f 0x64

0x6f 0x63 0x31 0x2e 0x74 0x78 0x74 String http://localhost/doc1.txt

3.17 Document Summary Index File

This example is generated using two items with a total of 33 tokens. The information consumed is
on the left, followed by a text comment on type of data, and sometimes followed by the converted
value. It shows that the document summary for the document with item identifier 0 begins at byte 0
in the docsum.dat file, while the item for the document summary associated with item identifier 1
begins at byte 532, and so on throughout the file. The file format is described in section 2.1.16.3.

0x0 0x0 0x0 0x0 offset into docsum.dat file 0

0x14 0x2 0x0 0x0 offset into docsum.dat file 532

0x1c 0x4 0x0 0x0 offset into docsum.dat file 1052

3.18 Unique Identity Data File

This example is generated using two items with a total of 33 tokens. The information consumed is
on the left, followed by a text comment on type of data, and sometimes followed by the converted
value. The file format is described in section 2.1.17.

0x56 0x65 0x72 0x73 0x69 0x6f 0x6e The string "Version"

0x0 0x0 0x0 0x0 Version is 0

0x36 0x0 0x0 0x0 Header size 54

0x2 0x0 0x0 0x0 Item count 2

0x1 0x0 0x0 0x0 Pages count 1

0xd4 0xf3 0x45 0xbf 0xf2 0x88 0xa9 0x5c 0xc 0x8c 0xc2 0xdc 0x45 0x6c 0xb4 0xdc MD5 string

for this item

0x0 0x0 0x0 0x0 CLASS identifier=0

0x1 0x0 0x0 0x0 Collection count 1

0x3 0x0 0x0 0x0 Collection String length 3

0x5f 0x73 0x70 Collection string name _sp

0x13 0xba 0x8e 0x5c 0xd9 0x3d 0x36 0xf2 0xdf 0x9 0xeb 0xaf 0xd2 0xb7 0x7e 0x88 Mapping MD5

string for this item

0x0 0x0 0x0 0x0 Mapping collection identifier 0

0x1 0x0 0x0 0x0 Mapping item identifier 1

0xd4 0xf3 0x45 0xbf 0xf2 0x88 0xa9 0x5c 0xc 0x8c 0xc2 0xdc 0x45 0x6c 0xb4 0xdc Mapping MD5

0x0 0x0 0x0 0x0 Mapping collection identifier 0

113 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0x0 0x0 0x0 0x0 Mapping item identifier 0

3.19 Dictionary Paged Count File

This example is generated using two items with a total of 33 tokens. The information consumed is
on the left, followed by a text comment on type of data, and sometimes followed by the converted
value. For the token-differences numbers, not all entries are included. For each bulk of relative
numbers, the respective token is described first for the sake of clarity. The file format is described in
section 2.1.14.4.1.

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 before first token-acc-number 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 before first doc-acc-number 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 before first token-acc-number 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 before first doc-acc-number 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 before first token-acc-number 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 before first doc-acc-number 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 before first token-acc-number 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 before first doc-acc-number 0

0x28 0x0 0x0 0x0 0x0 0x0 0x0 0x0 after last token-acc-number 40

0x28 0x0 0x0 0x0 0x0 0x0 0x0 0x0 after last doc-acc-number 40

0xc 0x0 0x0 0x0 0x0 0x0 0x0 0x0 after last token-acc-number 12

0xc 0x0 0x0 0x0 0x0 0x0 0x0 0x0 after last doc-acc-number 12

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 after last token-acc-number 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 after last doc-acc-number 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 after last token-acc-number 0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 after last doc-acc-number 0

0x21 0x0 0x0 0x0 token count 33

0x0 0x0 0x0 0x0 token identifier - token count 0

"aT"

0x2 0x0 0x0 0x0 diff-token-acc-number 2

0x2 0x0 0x0 0x0 diff-doc-acc-number 2

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

"aL"

0x4 0x0 0x0 0x0 diff-token-acc-number 4

0x4 0x0 0x0 0x0 diff-doc-acc-number 4

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

"beautifulL"

0x5 0x0 0x0 0x0 diff-token-acc-number 5

0x5 0x0 0x0 0x0 diff-doc-acc-number 5

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

114 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

"beautifulT"

0x6 0x0 0x0 0x0 diff-token-acc-number 6

0x6 0x0 0x0 0x0 diff-doc-acc-number 6

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

"cityL"

0x7 0x0 0x0 0x0 diff-token-acc-number 7

0x7 0x0 0x0 0x0 diff-doc-acc-number 7

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

"cityLXX

0x8 0x0 0x0 0x0 diff-token-acc-number 8

0x8 0x0 0x0 0x0 diff-doc-acc-number 8

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

cytyT

0x9 0x0 0x0 0x0 diff-token-acc-number 9

0x9 0x0 0x0 0x0 diff-doc-acc-number 9

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

cityTxx

0xa 0x0 0x0 0x0 diff-token-acc-number 10

0xa 0x0 0x0 0x0 diff-doc-acc-number 10

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

doc1T

0xb 0x0 0x0 0x0 diff-token-acc-number 11

0xb 0x0 0x0 0x0 diff-doc-acc-number 11

0x1 0x0 0x0 0x0 diff-token-acc-number 1

0x1 0x0 0x0 0x0 diff-doc-acc-number 1

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

115 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

doc2T

0xc 0x0 0x0 0x0 diff-token-acc-number 12

0xc 0x0 0x0 0x0 diff-doc-acc-number 12

0x2 0x0 0x0 0x0 diff-token-acc-number 2

0x2 0x0 0x0 0x0 diff-doc-acc-number 2

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x27 0x0 0x0 0x0 diff-token-acc-number 39

0x27 0x0 0x0 0x0 diff-doc-acc-number 39

0xc 0x0 0x0 0x0 diff-token-acc-number 12

0xc 0x0 0x0 0x0 diff-doc-acc-number 12

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x0 0x0 0x0 0x0 diff-token-acc-number 0

0x0 0x0 0x0 0x0 diff-doc-acc-number 0

0x3 0x0 token length 3

0x6 0x0 token length 6

0x11 0x0 token length 17

0x1c 0x0 token length 28

0x22 0x0 token length 34

0x2a 0x0 token length 42

0x30 0x0 token length 48

0x38 0x0 token length 56

0x3e 0x0 token length 62

0x44 0x0 token length 68

0x4a 0x0 token length 74

0x4e 0x0 token length 78

0x52 0x0 token length 82

0x56 0x0 token length 86

0x5a 0x0 token length 90

0x65 0x0 token length 101

0x6b 0x0 token length 107

0x73 0x0 token length 115

0x79 0x0 token length 121

0x81 0x0 token length 129

0x87 0x0 token length 135

0x8d 0x0 token length 141

0x92 0x0 token length 146

0x97 0x0 token length 151

0x9c 0x0 token length 156

0xa3 0x0 token length 163

0xa9 0x0 token length 169

0xaf 0x0 token length 175

0xb4 0x0 token length 180

0xb9 0x0 token length 185

0xc1 0x0 token length 193

0xc9 0x0 token length 201

0x61 0x4c 0x0 Token string aL

0x61 0x54 0x0 Token string aT

0x62 0x65 0x61 0x74 0x75 0x69 0x66 0x75 0x6c 0x4c 0x0 Token string beatuifulL

0x62 0x65 0x61 0x74 0x75 0x69 0x66 0x75 0x6c 0x54 0x0 Token string beatuifulT

0x63 0x69 0x74 0x79 0x4c 0x0 Token string cityL

116 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

0x63 0x69 0x74 0x79 0x4c 0xc7 0x82 0x0 Token string cityLÃé

0x63 0x69 0x74 0x79 0x54 0x0 Token string cityT

0x63 0x69 0x74 0x79 0x54 0xc7 0x82 0x0 Token string cityTÃé

0x64 0x6f 0x63 0x31 0x54 0x0 Token string doc1T

0x64 0x6f 0x63 0x32 0x54 0x0 Token string doc2T

0x68 0x74 0x74 0x70 0x54 0x0 Token string httpT

0x69 0x6e 0x4c 0x0 Token string inL

0x69 0x6e 0x54 0x0 Token string inT

0x69 0x73 0x4c 0x0 Token string isL

0x69 0x73 0x54 0x0 Token string isT

0x6c 0x6f 0x63 0x61 0x6c 0x68 0x6f 0x73 0x74 0x54 0x0 Token string localhostT

0x70 0x61 0x72 0x6b 0x4c 0x0 Token string parkL

0x70 0x61 0x72 0x6b 0x4c 0xc7 0x82 0x0 Token string parkLÃé

0x70 0x61 0x72 0x6b 0x54 0x0 Token string parkT

0x70 0x61 0x72 0x6b 0x54 0xc7 0x82 0x0 Token string parkTÃé

0x72 0x6f 0x6d 0x61 0x4c 0x0 Token string romaL

0x72 0x6f 0x6d 0x61 0x54 0x0 Token string romaT

0x74 0x68 0x65 0x4c 0x0 Token string theL

0x74 0x68 0x65 0x54 0x0 Token string theT

0x74 0x78 0x74 0x54 0x0 Token string txtT

0x74 0x78 0x74 0x54 0xc7 0x82 0x0 Token string txtTÃé

0x77 0x61 0x6c 0x6b 0x4c 0x0 Token string walkL

0x77 0x61 0x6c 0x6b 0x54 0x0 Token string walkT

0xc7 0x82 0x61 0x4c 0x0 Token string ÃéaL

0xc7 0x82 0x61 0x54 0x0 Token string ÃéaT

0xc7 0x82 0x68 0x74 0x74 0x70 0x54 0x0 Token string ÃéhttpT

0xc7 0x82 0x72 0x6f 0x6d 0x61 0x4c 0x0 Token string ÃéromaL

0xc7 0x82 0x72 0x6f 0x6d 0x61 0x54 0x0 Token string ÃéromaT

117 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

4 Security Considerations

The index files containing potentially confidential information, secure the index files on a file system
where only the administrator and the service account running the query matching component
processes have been granted read and write permissions.

118 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® FAST™ Search Server 2010

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

119 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

6 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

120 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

7 Index

A

Activated counter file 83
Activated counter stamp file 83
Activated indexed counter file 83
Activated indexed counter stamp file 83
Applicability 14
Attribute Vector Data File example 97
Attribute Vector Enum File example 97
Attribute vector files

data file 27
entry index file 28
index file 28
information file 29
overview 25
sorted unique data file 31

Attribute vector indexing information file 21
Attribute vector search information file 22

B

Between region example 107
Binary data fields

property context catalog file 33
Bit-vector data file

integer occurrence index files 62
Bit-vector greater than index file

integer occurrence index files 63
Bit-vector index file

integer occurrence index files 64
Bit-vector less than index file

integer occurrence index files 66
Bit-vector unique index file

integer occurrence index files 67
Boolean occurrences

property context catalog file 38

Boolean Occurrences Bit Compressed Count File
example 98

Boolean Occurrences Bit-vector File example 97
Boolean Occurrences Compressed Data File

example 99
Byte ordering 15

C

Change tracking 119
Common data types and fields (section 2 15,

section 2 15)
Common formats 15

byte ordering 15
consumer information 19
producer information 19

Configuration file - index (section 2.1.2 20, section
2.2.1 79)

Consumer information 19
Context catalog files

property context catalog file 33
Counter file set

activated counter file 83

activated counter stamp file 83
activated indexed counter file 83
activated indexed counter stamp file 83
index counter file 84
index counter stamp file 84

Counter file set overview 13

D

Data file
attribute vector files 27
document summary files 72
integer occurrence index files 68

Data types and fields - common (section 2 15,
section 2 15)

Details
activated counter file 83
activated counter stamp file 83
activated indexed counter file 83
activated indexed counter stamp file 83
attribute vector files 25
attribute vector indexing information file 21
attribute vector search information file 22
binary data fields – property context catalog file

33
bit-vector data file – integer occurrence index

files 62
bit-vector greater than index file – integer

occurrence index files 63
bit-vector index file – integer occurrence index

files 64
bit-vector less than index file – integer

occurrence index files 66
bit-vector unique index file – integer occurrence

index files 67
Boolean occurrences – property context catalog

file 38
byte ordering 15
common data types and fields (section 2 15,

section 2 15)

common formats 15
consumer information 19
context catalog files – property context catalog

file 33
data file – attribute vector files 27
data file – document summary files 72
data file – integer occurrence index files 68
dictionary files – property context catalog file 49
dictionary paged count data file 80
dictionary paged count index file 80
dictionary token number count index file 80
document identifier map file 23
duplicates data file 78
duplicates text file 78
entry index file – attribute vector files 28
exclusion listed file 82
index configuration – property context catalog file

32

121 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

index configuration file (section 2.1.2 20, section
2.2.1 79)

index counter file 84
index counter stamp file 84
index file – attribute vector files 28
index file – document summary files 73
index file – integer occurrence index files 69
index file set structure 15
index partition index valid file 81
index partition stamp file 81
index partition tuning file (section 2.1.3 20,

section 2.2.2 79)
index set generation file 80
index set stamp file 81
indexed OK stamp file 20
information file – attribute vector files 29
limits file – integer occurrence index files 70
local terminology – property context catalog file

31
merged findex done stamp file 21
merged fusion dictionary counts done stamp file

80
overflow file – document summary files 74

overview – document summary files 71
overview – integer occurrence index files 61
position occurrences files – property context

catalog file 44
producer information 19
property context catalog file 31
quantity count file – document summary files 75
range information file 24
sorted document identifier map file (section

2.1.10 23, section 2.4.2 82)
sorted unique data file – attribute vector files 31
sparse index file – integer occurrence index files

70
sparse sparse index file – integer occurrence

index files 71
stamp file 81
stamp text file (section 2.1.6 21, section 2.2.3

79)
unique identity data file 75
version information file (section 2.1.11 24,

section 2.2.4 79)
Dictionary file set

dictionary paged count data file 80
dictionary paged count index file 80
dictionary token number count index file 80
index configuration file 79
index partition tuning file 79
merged fusion dictionary counts done stamp file

80
stamp text file 79
version information file 79

Dictionary file set overview 12
Dictionary files

property context catalog file 49
Dictionary paged count data file 80
Dictionary Paged Count File example 113
Dictionary paged count index file 80
Dictionary Paged Data File example 106

between region 107
LCP entries 108
sparse region (section 3.9.1 106, section 3.9.2

106)
word offsets 108

Dictionary Paged Index File example 109
Dictionary Sorted Hash File example 109
Dictionary token number count index file 80
Document identifier map file 23
Document Summary Data File example 111
Document summary files

data file 72
index file 73
overflow file 74
overview 71
quantity count file 75

Document Summary Index File example 112
Duplicates data file 78
Duplicates text file 78

E

Entry index file - attribute vector files 28
Examples

Attribute Vector Data File 97
Attribute Vector Enum File 97
between region 107
Boolean Occurrences Bit Compressed Count File

98
Boolean Occurrences Bit-vector File 97
Boolean Occurrences Compressed Data File 99
Dictionary Paged Count File 113
Dictionary Paged Data File 106
Dictionary Paged Index File 109
Dictionary Sorted Hash File 109
Document Summary Data File 111
Document Summary Index File 112
Full Index Directory Structure 85
Integer Occurrences Bit-vector Index File 110
Integer Occurrences Bit-vector Unique Index File

111
Integer Occurrences Data File 111
Integer Occurrences Index File 111
LCP entries 108
Position Occurrences Compressed Data File 105
sparse region (section 3.9.1 106, section 3.9.2

106)
Unique Identity Data File 112
URL Map File 97
word offsets 108

Exclusion listed file 82

F

Fields - vendor-extensible 14
File set

counter 13
dictionary 12
generation 13
index 9
state 12

Files

122 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

activated counter 83
activated counter stamp 83
activated indexed counter 83
activated indexed counter stamp 83
attribute vector 25
attribute vector indexing information 21
attribute vector search information 22
dictionary paged count data 80
dictionary paged count index 80
dictionary token number count index 80
document identifier map 23
duplicates data 78
duplicates text 78
exclusion listed 82
index configuration (section 2.1.2 20, section

2.2.1 79)
index counter 84
index counter stamp 84
index partition index valid 81
index partition stamp 81
index partition tuning (section 2.1.3 20, section

2.2.2 79)
index set generation 80

index set stamp 81
indexed OK stamp 20
merged findex done stamp 21
merged fusion dictionary counts done stamp 80
property context catalog 31
range information 24
sorted document identifier map (section 2.1.10

23, section 2.4.2 82)
stamp 81
stamp text (section 2.1.6 21, section 2.2.3 79)
unique identity data 75
version information (section 2.1.11 24, section

2.2.4 79)
Formats

common 15
Full Index Directory Structure example 85

G

Generation file set
exclusion listed file 82
sorted document identifier map file 82
stamp file 81

Generation file set overview 13
Glossary 7

I

Implementer - security considerations 117
Index configuration

property context catalog file 32
Index configuration file (section 2.1.2 20, section

2.2.1 79)
Index counter file 84
Index counter stamp file 84
Index file

attribute vector files 28
document summary files 73

integer occurrence index files 69

Index file set
attribute vector files 25
attribute vector indexing information file 21
attribute vector search information file 22
common formats 15
document identifier map file 23
duplicates data file 78
duplicates text file 78
index configuration file 20
index partition tuning file 20
indexed OK stamp file 20
integer occurrence index files 61
merged findex done stamp file 21
overview 9
property context catalog file 31
range information file 24
sorted document identifier map file 23
stamp text file 21
structure 15
unique identity data file 75
version information file 24

Index partition index valid file 81
Index partition stamp file 81

Index partition tuning file (section 2.1.3 20, section
2.2.2 79)

Index set generation file 80
Index set stamp file 81
Indexed OK stamp file 20
Information file

attribute vector files 29
Informative references 8
Integer occurrence index files

bit-vector data file 62
bit-vector greater than index file 63
bit-vector index file 64
bit-vector less than index file 66
bit-vector unique index file 67
data file 68
index file 69
limits file 70
overview 61
sparse index file 70
sparse sparse index file 71

Integer Occurrences Bit-vector Index File example
110

Integer Occurrences Bit-vector Unique Index File
example 111

Integer Occurrences Data File example 111
Integer Occurrences Index File example 111
Introduction 7

L

LCP entries example 108
Limits file

integer occurrence index files 70
Local terminology

property context catalog file 31
Localization 14

M

123 / 123

[MS-FSIXDS] — v20120630
 Index Data Structures

 Copyright © 2012 Microsoft Corporation.

 Release: July 16, 2012

Merged findex done stamp file 21
Merged fusion dictionary counts done stamp file 80

N

Normative references 8

O

Overflow file
document summary files 74

Overview
counter file set 13
dictionary file set 12
document summary files 71
generation file set 13

index file set 9
integer occurrence index files 61
state file set 12

Overview (synopsis) 8

P

Position Occurrences Compressed Data File example
105

Position occurrences files
property context catalog file 44

Producer information 19
Product behavior 118
Property context catalog file 31

binary data fields 33
Boolean occurrences 38
context catalog files 33
dictionary files 49
index configuration 32
local terminology 31
position occurrences files 44

Q

Quantity count file
document summary files 75

R

Range information file 24
References 8

informative 8
normative 8

Relationship to protocols and other structures 13

S

Security - implementer considerations 117
Sorted document identifier map file (section 2.1.10

23, section 2.4.2 82)
Sorted unique data file

attribute vector files 31
Sparse index file

integer occurrence index files 70
Sparse region example (section 3.9.1 106, section

3.9.2 106)

Sparse sparse index file
integer occurrence index files 71

Stamp file 81
Stamp text file (section 2.1.6 21, section 2.2.3 79)
State file set

index partition index valid file 81
index partition stamp file 81
index set generation file 80
index set stamp file 81

State file set overview 12
Structure overview

counter file set 13
dictionary file set 12
generation file set 13
index file set 9
state file set 12

Structures
index file set 15
overview (section 2 15, section 2 15)

T

Tracking changes 119

U

Unique identity data file 75
Unique Identity Data File example 112
URL Map File example 97

V

Vendor-extensible fields 14
Version information file (section 2.1.11 24, section

2.2.4 79)
Versioning 14

W

Word offsets example 108

	Table of Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Structure Overview (Synopsis)
	1.3.1 Index File Set
	1.3.2 Dictionary File Set
	1.3.3 State File Set
	1.3.4 Generation File Set
	1.3.5 Counter File Set

	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Index File Set
	2.1.1 Common Formats
	2.1.1.1 Byte Ordering
	2.1.1.2 Data Types and Internal Format Conversion
	2.1.1.2.1 Internal Text Data Type
	2.1.1.2.2 Internal Numeric Data Type

	2.1.1.3 Producer Information
	2.1.1.4 Consumer Information

	2.1.2 Index Configuration File
	2.1.3 Index Partition Tuning File
	2.1.4 Indexed OK Stamp File
	2.1.5 Merged Findex Done Stamp File
	2.1.6 Stamp Text File
	2.1.7 Attribute Vector Indexing Information File
	2.1.8 Attribute Vector Search Information File
	2.1.9 Document Identifier Map File
	2.1.10 Sorted Document Identifier Map File
	2.1.11 Version Information File
	2.1.12 Range Information File
	2.1.13 Attribute Vector Files
	2.1.13.1 Data File
	2.1.13.2 Entry Index File
	2.1.13.3 Index File
	2.1.13.4 Information File
	2.1.13.5 Sorted Unique Data File

	2.1.14 Property Context Catalog File
	2.1.14.1 Overview
	2.1.14.1.1 Local Terminology
	2.1.14.1.2 Index Configuration
	2.1.14.1.3 Context Catalog Files
	2.1.14.1.4 Binary Data Fields
	2.1.14.1.4.1 Common Algorithms for Decoding Binary Encoded Fields
	2.1.14.1.4.2 NextBit Subroutine
	2.1.14.1.4.3 ONES Subroutine
	2.1.14.1.4.4 ReadN Subroutine
	2.1.14.1.4.5 RICE-S Decoding Subroutine
	2.1.14.1.4.6 Decode32 Decoding Subroutine
	2.1.14.1.4.7 RICE-C Decoding Subroutine
	2.1.14.1.4.8 RICE-D Decoding Subroutine
	2.1.14.1.4.9 RICE-D0 Decoding Subroutine
	2.1.14.1.4.10 RICE-BOOL Decoding Subroutine
	2.1.14.1.4.11 RICE-2 Decoding Subroutine
	2.1.14.1.4.12 DECODE64-D0 Subroutine
	2.1.14.1.4.13 DECODE64-D Subroutine

	2.1.14.2 Boolean Occurrences
	2.1.14.2.1 Bit-vector Data File
	2.1.14.2.2 Bit-vector Index File
	2.1.14.2.3 Compressed Occurrence Counts File
	2.1.14.2.4 Data Compressed Sizes File
	2.1.14.2.5 Binary Data File
	2.1.14.2.5.1 Binary Data Field

	2.1.14.3 Position Occurrences Files
	2.1.14.3.1 Compressed Sizes File
	2.1.14.3.2 Compressed Occurrence Counts File
	2.1.14.3.3 Binary Data File
	2.1.14.3.3.1 Binary Data Field

	2.1.14.4 Dictionary Files
	2.1.14.4.1 Paged Count Data File
	2.1.14.4.2 Paged Count Index File
	2.1.14.4.3 Paged Data File
	2.1.14.4.3.1 Sparse Binary Data Field
	2.1.14.4.3.2 Between Binary Data Field
	2.1.14.4.3.3 Token Offsets
	2.1.14.4.3.4 LCP Entries

	2.1.14.4.4 Paged Index File
	2.1.14.4.5 Sorted Hash File
	2.1.14.4.6 Token Number Count Index File
	2.1.14.4.7 Token Number Index File
	2.1.14.4.8 Warmup File

	2.1.15 Integer Occurrence Index Files
	2.1.15.1 Overview
	2.1.15.2 Bit-vector Data File
	2.1.15.3 Bit-Vector Greater Than Index File
	2.1.15.4 Bit-vector Index File
	2.1.15.5 Bit-vector Less than Index File
	2.1.15.6 Bit-vector Unique Index File
	2.1.15.7 Data File
	2.1.15.8 Index File
	2.1.15.9 Limits File
	2.1.15.10 Sparse Index File
	2.1.15.11 Sparse Sparse Index File

	2.1.16 Document Summary Files
	2.1.16.1 Overview
	2.1.16.2 Data File
	2.1.16.3 Index File
	2.1.16.4 Overflow File
	2.1.16.5 Quantity Count File

	2.1.17 Unique Identity Data File
	2.1.18 Duplicates Data File
	2.1.19 Duplicates Text File

	2.2 Dictionary File Set
	2.2.1 Index Configuration File
	2.2.2 Index Partition Tuning File
	2.2.3 Stamp Text File
	2.2.4 Version Information File
	2.2.5 Merged Fusion Dictionary Counts Done Stamp File
	2.2.6 Dictionary Paged Count Data File
	2.2.7 Dictionary Paged Count Index File
	2.2.8 Dictionary Token number Count Index File

	2.3 State File Set
	2.3.1 Index Set Generation File
	2.3.2 Index Set Stamp File
	2.3.3 Index Partition Stamp File
	2.3.4 Index Partition Index Valid File

	2.4 Generation File Set
	2.4.1 Stamp File
	2.4.2 Sorted Document Identifier Map File
	2.4.3 Exclusion Listed File

	2.5 Counter File Set
	2.5.1 Activated Counter File
	2.5.2 Activated Counter Stamp File
	2.5.3 Activated Indexed Counter File
	2.5.4 Activated Indexed Counter Stamp File
	2.5.5 Index Counter File
	2.5.6 Index Counter Stamp File

	3 Structure Examples
	3.1 Full Index Directory Structure
	3.2 URL Map File
	3.3 Attribute Vector Data File
	3.4 Attribute Vector Enum File
	3.5 Boolean Occurrences Bit-vector File
	3.6 Boolean Occurrences Bit Compressed Count File
	3.7 Boolean Occurrences Compressed Data File
	3.8 Position Occurrences Compressed Data File
	3.9 Dictionary Paged Data File
	3.9.1 Page Header
	3.9.2 Sparse Region
	3.9.3 BETWEEN Region
	3.9.4 Word Offsets
	3.9.5 LCP Entries

	3.10 Dictionary Paged Index File
	3.11 Dictionary Sorted Hash File
	3.12 Integer Occurrences Bit-vector Index File
	3.13 Integer Occurrences Bit-vector Unique Index File
	3.14 Integer Occurrences Data File
	3.15 Integer Occurrences Index File
	3.16 Document Summary Data File
	3.17 Document Summary Index File
	3.18 Unique Identity Data File
	3.19 Dictionary Paged Count File

	4 Security Considerations
	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

