[bookmark: _GoBack][MS-XCCOSIP]:
Extensible Chat Control Over Session Initiation Protocol (SIP)

Intellectual Property Rights Notice for Open Specifications Documentation
· Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
· Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
· No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
· Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
· License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
· Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
· Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.
Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Support. For questions and support, please contact dochelp@microsoft.com.
Revision Summary
	Date
	Revision History
	Revision Class
	Comments

	1/20/2012
	0.1
	New
	Released new document.

	4/11/2012
	0.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/16/2012
	0.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/8/2012
	1.0
	Major
	Significantly changed the technical content.

	2/11/2013
	2.0
	Major
	Significantly changed the technical content.

	7/30/2013
	2.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	11/18/2013
	2.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	2/10/2014
	2.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	4/30/2014
	2.1
	Minor
	Clarified the meaning of the technical content.

	7/31/2014
	2.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/30/2014
	2.2
	Minor
	Clarified the meaning of the technical content.

	3/30/2015
	3.0
	Major
	Significantly changed the technical content.

	9/4/2015
	3.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	7/15/2016
	3.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	9/14/2016
	3.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	4/27/2018
	4.0
	Major
	Significantly changed the technical content.

	8/28/2018
	5.0
	Major
	Significantly changed the technical content.

	8/17/2021
	6.0
	Major
	Significantly changed the technical content.

Table of Contents
1	Introduction	9
1.1	Glossary	9
1.2	References	10
1.2.1	Normative References	11
1.2.2	Informative References	11
1.3	Overview	11
1.4	Relationship to Other Protocols	12
1.5	Prerequisites/Preconditions	13
1.6	Applicability Statement	13
1.7	Versioning and Capability Negotiation	13
1.8	Vendor-Extensible Fields	13
1.9	Standards Assignments	13
2	Messages	14
2.1	Transport	14
2.2	Message Syntax	14
2.2.1	Namespaces	14
2.2.2	XCCOS syntax	14
2.2.2.1	XCCOS data elements	14
2.2.2.1.1	AuditDataBlock	14
2.2.2.1.2	InfoField	15
2.2.2.1.3	PropertyField	15
2.2.2.1.4	UserInformationDataBlock	15
2.2.2.1.5	GroupInformationDataBlock	17
2.2.2.1.6	From	17
2.2.2.1.7	ChannelInformationDataBlock	18
2.2.2.1.7.1	Channel Attributes	18
2.2.2.1.7.2	Channel Elements	19
2.2.2.1.7.2.1	Audit	19
2.2.2.1.7.2.2	Info	19
2.2.2.1.7.2.3	Prop	20
2.2.2.1.7.2.4	msg	20
2.2.2.1.7.3	Examples	20
2.2.2.1.8	CategoryInformationDataBlock	22
2.2.2.1.8.1	CategoryAttributes	22
2.2.2.1.8.2	Category Elements	22
2.2.2.1.8.2.1	info	22
2.2.2.1.8.3	Examples	22
2.2.2.1.9	ChannelIdsInformationDataBlock	22
2.2.2.1.10	ServerInformationDataBlock	23
2.2.2.1.11	FilterInformationDataBlock	24
2.2.2.1.11.1	Filter Attributes	24
2.2.2.1.11.2	Filter Elements	25
2.2.2.1.12	AceVerbEnum	25
2.2.2.1.13	Ace	25
2.2.2.1.13.1	Ace Attributes	25
2.2.2.1.13.2	Ace Elements	25
2.2.2.1.14	RoleList	25
2.2.2.1.14.1	RoleList Elements	25
2.2.2.1.14.2	RoleList Examples	26
2.2.2.1.15	InviteDataBlock	26
2.2.2.1.16	QueryInformationDataBlock	26
2.2.2.1.17	BcQueryDataBlock	27
2.2.2.1.17.1	last	27
2.2.2.1.17.2	msgid	27
2.2.2.1.17.3	Example	28
2.2.2.1.18	BcSearchDataBlock	28
2.2.2.1.18.1	limit	28
2.2.2.1.18.2	text	28
2.2.2.1.18.3	msgId	29
2.2.2.1.18.4	matchcase	29
2.2.2.1.18.5	searchbkwds	29
2.2.2.1.18.6	sortbkwds	29
2.2.2.1.18.7	date	29
2.2.2.1.18.8	uib	29
2.2.2.1.18.9	cib	29
2.2.2.1.18.10	Example	29
2.2.2.1.19	ResultCountDataBlock	30
2.2.2.1.20	AssociationDataBlock	30
2.2.2.1.21	HashInformationDataBlock	30
2.2.2.1.22	ActiveInformationDataBlock	30
2.2.2.1.23	FailureInformationDataBlock	31
2.2.2.1.24	FileTokenDataBlock	31
2.2.2.1.25	TokenDataBlock	31
2.2.2.1.26	PreferenceDataBlock	31
2.2.2.1.26.1	Content Format	32
2.2.2.1.27	ResponseBlock	33
2.2.2.1.28	XccosCommandDataBlock	33
2.2.2.1.29	XccosReplyNoticeDataBlock	34
2.2.2.2	XCCOS Control Elements	35
2.2.2.2.1	XccosControlPrimitive	35
2.2.2.2.2	XccosCommandPrimitive	36
2.2.2.2.3	XccosMessageIdentifier	38
2.2.2.2.4	XccosReplyPrimitive	38
2.2.2.2.5	XccosNoticePrimitive	40
2.2.2.2.6	XccosErrorPrimitive	41
2.2.2.2.7	XccosSystemStatusDataBlock	41
2.2.2.2.8	XccosSystemPrimitive	41
2.2.2.2.9	GroupChatDataBlock	42
3	Protocol Details	43
3.1	Client Details	43
3.1.1	Common Channel State	43
3.1.2	Sending XccosCommandPrimitives	43
3.1.2.1	XccosCommandPrimitive transaction handling	43
3.1.2.1.1	Abstract Data Model	43
3.1.2.1.2	Timers	43
3.1.2.1.3	Initialization	43
3.1.2.1.4	Higher-Layer Triggered Events	44
3.1.2.1.5	Message Processing Events and Sequencing Rules	44
3.1.2.1.6	Timer Events	44
3.1.2.1.7	Other Local Events	44
3.1.3	Requesting Channel Server URI	45
3.1.3.1	Abstract Data Model	45
3.1.3.2	Timers	45
3.1.3.3	Initialization	45
3.1.3.4	Higher-Layer Triggered Event	45
3.1.3.5	Message Processing Events and Sequencing Rules	45
3.1.3.6	Timer Events	45
3.1.3.7	Other Local Events	45
3.1.4	Retrieving Server Information	45
3.1.4.1	Abstract Data Model	45
3.1.4.2	Timers	45
3.1.4.3	Initialization	46
3.1.4.4	Higher-Layer Triggered Events	46
3.1.4.5	Message Processing Events And Sequencing Rules	46
3.1.4.6	Timer Events	46
3.1.4.7	Other Local Events	46
3.1.5	Joining A Channel	46
3.1.5.1	Abstract Data Model	46
3.1.5.2	Timers	46
3.1.5.3	Initialization	46
3.1.5.4	Higher-Layer Triggered Events	47
3.1.5.5	Message Processing Events And Sequencing Rules	47
3.1.5.6	Timer Events	47
3.1.5.7	Other Local Events	47
3.1.6	Joining Multiple Channels	47
3.1.6.1	Abstract Data Model	47
3.1.6.2	Timers	47
3.1.6.3	Initialization	47
3.1.6.4	Higher-Layer Triggered Events	48
3.1.6.5	Message Processing Events And Sequencing Rules	48
3.1.6.6	Timer Events	48
3.1.6.7	Other Local Events	48
3.1.7	Retrieving Most Recent Chat History From A Channel	48
3.1.7.1	Abstract Data Model	48
3.1.7.2	Timers	48
3.1.7.3	Initialization	48
3.1.7.4	Higher-Layer Triggered Events	49
3.1.7.5	Message Processing And Sequencing Rules	49
3.1.7.6	Timer Events	49
3.1.7.7	Other Local Events	49
3.1.8	Searching Chat History	49
3.1.8.1	Abstract Data Model	49
3.1.8.2	Timers	49
3.1.8.3	Initialization	49
3.1.8.4	Higher-Layer Triggered Events	50
3.1.8.5	Message Processing And Sequencing Events	50
3.1.8.6	Timer Events	50
3.1.8.7	Other Local Events	50
3.1.9	Searching For Channels	50
3.1.9.1	Abstract Data Model	50
3.1.9.2	Timers	50
3.1.9.3	Initialization	50
3.1.9.4	Higher-Layer Triggered Events	51
3.1.9.5	Message Processing And Sequencing Rules	51
3.1.9.6	Timer Events	51
3.1.9.7	Other Local Events	51
3.1.10	Retrieving Invitations	51
3.1.10.1	Abstract Data Model	51
3.1.10.2	Timers	51
3.1.10.3	Initialization	51
3.1.10.4	Higher-Level Triggered Events	51
3.1.10.5	Message Processing And Sequencing Rules	51
3.1.10.6	Timer Events	52
3.1.10.7	Other Local Events	52
3.1.11	Retrieving Associated Channels	52
3.1.11.1	Abstract Data Model	52
3.1.11.2	Timers	52
3.1.11.3	Initialization	52
3.1.11.4	Higher-Layer Triggered Events	52
3.1.11.5	Message Processing And Sequencing Rules	53
3.1.11.6	Timer Events	53
3.1.11.7	Other Local Events	53
3.1.12	Retrieving Channel Details	53
3.1.12.1	Abstract Data Model	53
3.1.12.2	Timers	53
3.1.12.3	Initialization	53
3.1.12.4	Higher-Layer Triggered Events	53
3.1.12.5	Message Sequencing And Processing Rules	53
3.1.12.6	Timer Events	54
3.1.12.7	Other Local Events	54
3.1.13	Sending A Chat Message	54
3.1.13.1	Abstract Data Model	54
3.1.13.2	Timers	54
3.1.13.3	Initialization	54
3.1.13.4	Higher-Layer Triggered Events	54
3.1.13.5	Message Processing Events and Sequencing Rules	54
3.1.13.6	Timer Events	54
3.1.13.7	Other Local Events	54
3.1.14	Receiving A Chat Message	55
3.1.14.1	Abstract Data Model	55
3.1.14.2	Timers	55
3.1.14.3	Initialization	55
3.1.14.4	Higher-Layer Triggered Events	55
3.1.14.5	Message Processing Events and Sequencing Rules	55
3.1.14.6	Timer Events	55
3.1.14.7	Other Local Events	55
3.1.15	Receiving XccosNoticePrimitives	56
3.1.15.1	Abstract Data Model	56
3.1.15.2	Timers	56
3.1.15.3	Initialization	56
3.1.15.4	Higher-Layer Triggered Events	56
3.1.15.5	Message Processing And Sequencing Rules	56
3.1.15.6	Other Local Events	58
3.1.15.7	Timer Events	58
3.1.16	Retrieving Channel Permissions	58
3.1.16.1	Abstract Data Model	58
3.1.16.2	Timers	58
3.1.16.3	Initialization	59
3.1.16.4	Higher-Layer Triggered Events	59
3.1.16.5	Message Processing Events and Sequencing Rules	59
3.1.16.6	Timer Events	59
3.1.16.7	Other Local Events	59
3.1.17	Modifying a Channel	59
3.1.17.1	Abstract Data Model	59
3.1.17.2	Timers	59
3.1.17.3	Initialization	59
3.1.17.4	Higher-Layer Triggered Events	60
3.1.17.5	Message Processing Events and Sequencing Rules	60
3.1.17.6	Timer Events	60
3.1.17.7	Other Local Events	60
3.1.18	Retrieving Legacy User Preferences	60
3.1.18.1	Abstract Data Model	60
3.1.18.2	Timers	60
3.1.18.3	Initialization	60
3.1.18.4	Higher-Layer Triggered Events	60
3.1.18.5	Message Processing Events and Sequencing Rules	60
3.1.18.6	Timer Events	61
3.1.18.7	Other Local Events	61
3.1.19	Requesting File Transfer Token	61
3.1.19.1	Abstract Data Model	61
3.1.19.2	Timers	61
3.1.19.3	Initialization	61
3.1.19.4	Higher-Layer Triggered Events	61
3.1.19.5	Message Processing Events and Sequencing Rules	61
3.1.19.6	Timer Events	62
3.1.19.7	Other Local Events	62
3.2	Server Details	62
3.2.1	Receiving XccosCommandPrimitive messages	62
3.2.1.1	Abstract Data Model	62
3.2.1.2	Timers	62
3.2.1.3	Initialization	62
3.2.1.4	Higher-Layer Triggered Event	62
3.2.1.5	Message Processing Events and Sequencing Rules	62
3.2.1.6	Timer Events	63
3.2.1.7	Other Local Events	63
3.2.2	Retrieving Server Information	63
3.2.2.1	Abstract Data Model	63
3.2.2.2	Timers	63
3.2.2.3	Initialization	63
3.2.2.4	Higher-Layer Triggered Event	63
3.2.2.5	Message Processing Events and Sequencing Rules	63
3.2.2.6	Timer Events	63
3.2.2.7	Other Local Events	64
3.2.3	Joining Multiple Channels	64
3.2.3.1	Abstract Data Model	64
3.2.3.2	Timers	64
3.2.3.3	Initialization	64
3.2.3.4	Higher-Layer Triggered Event	64
3.2.3.5	Message Processing events and Sequencing Rules	64
3.2.3.6	Timer Events	66
3.2.3.7	Other Local Events	66
3.2.4	Joining Single Channel	66
3.2.4.1	Abstract Data Model	66
3.2.4.2	Timers	66
3.2.4.3	Initialization	66
3.2.4.4	Higher-Layer Triggered Event	66
3.2.4.5	Message Processing Events and Sequencing Rules	66
3.2.4.6	Timer Events	67
3.2.4.7	Other Local Events	67
3.2.5	Retrieving Most Recent Chat History From A Channel	67
3.2.5.1	Abstract Data Model	67
3.2.5.2	Timers	67
3.2.5.3	Initialization	67
3.2.5.4	Higher-Layer Triggered Event	67
3.2.5.5	Message Processing Events and Sequencing Rules	67
3.2.5.6	Timer Events	68
3.2.5.7	Other Local Events	68
3.2.6	Processing Chat Messages	68
3.2.6.1	Abstract Data Model	68
3.2.6.2	Timers	68
3.2.6.3	Initialization	68
3.2.6.4	Higher-Layer Triggered Event	68
3.2.6.5	Message Processing Events and Sequencing Rules	68
3.2.6.6	Timer Events	69
3.2.6.7	Other Local Events	69
3.2.7	Retrieving Channel Permissions	69
3.2.7.1	Abstract Data Model	69
3.2.7.2	Timers	69
3.2.7.3	Initialization	69
3.2.7.4	Higher-Layer Triggered Events	69
3.2.7.5	Message Processing Events and Sequencing Rules	69
3.2.7.6	Timer Events	70
3.2.7.7	Other Local Events	70
3.2.8	Modifying a Channel	70
3.2.8.1	Abstract Data Model	70
3.2.8.2	Timers	70
3.2.8.3	Initialization	70
3.2.8.4	Higher-Layer Triggered Events	70
3.2.8.5	Message Processing Events and Sequencing Rules	70
3.2.8.6	Timer Events	71
3.2.8.7	Other Local Events	71
4	Protocol Examples	72
4.1	Retrieving Server Information	72
4.2	Batch joining	72
4.3	Retrieve Most Recent Chat History	74
4.4	Chat Room Search	75
4.5	Chat Room Content Search by Date	75
4.6	Sending Chats	76
5	Security	77
5.1	Security Considerations for Implementers	77
5.2	Index of Security Parameters	77
6	Appendix A: Full XML Schema	78
6.1	XCCOS Schema	78
7	Appendix B: Product Behavior	88
8	Change Tracking	89
9	Index	90

[bookmark: section_08bc8a6d83374a598882db3afc211e6e][bookmark: _Toc79581074]Introduction
The Extensible Chat Control Over Session Initiation Protocol provides messaging and control mechanism between users and the server in a persistent multiparty channel communication system.
Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in this specification are informative.
[bookmark: section_99598f3e55f944c8a23364826878fce5][bookmark: _Toc79581075]Glossary
This document uses the following terms:
[bookmark: gt_b581857f-39aa-4979-876b-daba67a40f15]access control entry (ACE): An entry in an access control list (ACL) that contains a set of user rights and a security identifier (SID) that identifies a principal for whom the rights are allowed, denied, or audited.
[bookmark: gt_9f92aa05-dd0a-45f2-88d6-89f1fb654395]access control list (ACL): A list of access control entries (ACEs) that collectively describe the security rules for authorizing access to some resource; for example, an object or set of objects.
[bookmark: gt_e467d927-17bf-49c9-98d1-96ddf61ddd90]Active Directory: The Windows implementation of a general-purpose directory service, which uses LDAP as its primary access protocol. Active Directory stores information about a variety of objects in the network such as user accounts, computer accounts, groups, and all related credential information used by Kerberos [MS-KILE]. Active Directory is either deployed as Active Directory Domain Services (AD DS) or Active Directory Lightweight Directory Services (AD LDS), which are both described in [MS-ADOD]: Active Directory Protocols Overview.
[bookmark: gt_179b9392-9019-45a3-880b-26f6890522b7]base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is converted to a sequence of printable ASCII characters, as described in [RFC4648].
[bookmark: gt_1d79d7a7-ba2c-4b34-931c-7ba8057c87b2]Boolean: An operation or expression that can be evaluated only as either true or false.
[bookmark: gt_f2369991-a884-4843-a8fa-1505b6d5ece7]Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones around the world are expressed as positive and negative offsets from UTC. In this role, it is also referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all references to UTC refer to the time at UTC-0 (or GMT).
[bookmark: gt_b91c1e27-e8e0-499b-8c65-738006af72ee]endpoint: A communication port that is exposed by an application server for a specific shared service and to which messages can be addressed.
[bookmark: gt_f49694cc-c350-462d-ab8e-816f0103c6c1]globally unique identifier (GUID): A term used interchangeably with universally unique identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not imply or require a specific algorithm or mechanism to generate the value. Specifically, the use of this term does not imply or require that the algorithms described in [RFC4122] or [C706] must be used for generating the GUID. See also universally unique identifier (UUID).
[bookmark: gt_b7e2b611-0af5-4fec-8af2-3f9ce7bad205]hash: A fixed-size result that is obtained by applying a one-way mathematical function, which is sometimes referred to as a hash algorithm, to an arbitrary amount of data. If the input data changes, the hash also changes. The hash can be used in many operations, including authentication and digital signing.
[bookmark: gt_d72f1494-4917-4e9e-a9fd-b8f1b2758dcd]Hypertext Transfer Protocol (HTTP): An application-level protocol for distributed, collaborative, hypermedia information systems (text, graphic images, sound, video, and other multimedia files) on the World Wide Web.
[bookmark: gt_bed47e7f-2cf3-448c-8718-d9be8f682780]membership: The state or status of being a member of a member group. A membership contains additional metadata such as the privacy level that is associated with the membership.
[bookmark: gt_762051d8-4fdc-437e-af9d-3f4da77c3c7d]node: A location in a diagram that can have links to other locations.
[bookmark: gt_4571dc27-4115-4cdf-8dc3-f8fe410a9966]notification: A process in which a subscribing Session Initiation Protocol (SIP) client is notified of the state of a subscribed resource by sending a NOTIFY message to the subscriber.
[bookmark: gt_5fbde6d4-3020-4e34-bf1e-21a6400ac75e]organizational unit: An Active Directory Domain Services (AD DS) container object that is used within domains. An organizational unit is a logical container into which users, groups, computers, and other organizational units are placed. It can contain objects only from its parent domain. An organizational unit is the smallest scope to which a Group Policy object (GPO) can be linked, or over which administrative authority can be delegated.
[bookmark: gt_586971aa-3b65-4de3-be93-1a9756777d89]Session Initiation Protocol (SIP): An application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. SIP is defined in [RFC3261].
[bookmark: gt_d49074fc-26de-4e43-8d76-4ab945694d78]Setting: A partition of a metadata store. It is used to store Properties, localized names, and access control entries (ACEs) for MetadataObjects.
[bookmark: gt_f2bc7fed-7e02-4fa5-91b3-97f5c978563a]Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of messages in client and server applications communicating over open networks. TLS supports server and, optionally, client authentication by using X.509 certificates (as specified in [X509]). TLS is standardized in the IETF TLS working group.
[bookmark: gt_e18af8e8-01d7-4f91-8a1e-0fb21b191f95]Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI): Generic Syntax [RFC3986].
[bookmark: gt_433a4fb7-ef84-46b0-ab65-905f5e3a80b1]Uniform Resource Locator (URL): A string of characters in a standardized format that identifies a document or resource on the World Wide Web. The format is as specified in [RFC1738].
[bookmark: gt_982b7f8e-d516-4fd5-8d5e-1a836081ed85]XML: The Extensible Markup Language, as described in [XML1.0].
[bookmark: gt_8fa90ece-7a01-4c00-af85-adbf0ed01882]XML document: A document object that is well formed, as described in [XML10/5], and might be valid. An XML document has a logical structure that is composed of declarations, elements, comments, character references, and processing instructions. It also has a physical structure that is composed of entities, starting with the root, or document, entity.
[bookmark: gt_a364f92c-0374-4568-b7f8-40bd74437dd5]XML element: An XML structure that typically consists of a start tag, an end tag, and the information between those tags. Elements can have attributes and can contain other elements.
[bookmark: gt_485f05b3-df3b-45ac-b8bf-d05f5d185a24]XML namespace: A collection of names that is used to identify elements, types, and attributes in XML documents identified in a URI reference [RFC3986]. A combination of XML namespace and local name allows XML documents to use elements, types, and attributes that have the same names but come from different sources. For more information, see [XMLNS-2ED].
[bookmark: gt_b9a20be7-31d9-4dcd-9cb9-ba72302857a2]XML namespace prefix: An abbreviated form of an XML namespace, as described in [XML].
[bookmark: gt_bd0ce6f9-c350-4900-827e-951265294067]XML schema: A description of a type of XML document that is typically expressed in terms of constraints on the structure and content of documents of that type, in addition to the basic syntax constraints that are imposed by XML itself. An XML schema provides a view of a document type at a relatively high level of abstraction.
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
[bookmark: section_6816a093b4fe4818b2832308ea3f9d20][bookmark: _Toc79581076]References
Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.
[bookmark: section_5b58e6cbd7ef44939da2b824b6c18ac8][bookmark: _Toc79581077]Normative References
We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.
[ISO-8601] International Organization for Standardization, "Data Elements and Interchange Formats - Information Interchange - Representation of Dates and Times", ISO/IEC 8601:2004, December 2004, http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&ICS1=1&ICS2=140&ICS3=30
Note There is a charge to download the specification.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt
[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and Schooler, E., "SIP: Session Initiation Protocol", RFC 3261, June 2002, http://www.ietf.org/rfc/rfc3261.txt
[XMLNS] Bray, T., Hollander, D., Layman, A., et al., Eds., "Namespaces in XML 1.0 (Third Edition)", W3C Recommendation, December 2009, http://www.w3.org/TR/2009/REC-xml-names-20091208/
[XMLSCHEMA1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema Part 1: Structures", W3C Recommendation, May 2001, http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
[XMLSCHEMA2] Biron, P.V., Ed. and Malhotra, A., Ed., "XML Schema Part 2: Datatypes", W3C Recommendation, May 2001, http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[bookmark: section_f983d7382d3948f09f51a0423fd39e8b][bookmark: _Toc79581078]Informative References
[MS-PRES] Microsoft Corporation, "Presence Protocol".
[MS-SIPREGE] Microsoft Corporation, "Session Initiation Protocol (SIP) Registration Extensions".
[MS-SIPRE] Microsoft Corporation, "Session Initiation Protocol (SIP) Routing Extensions".
[MS-SIP] Microsoft Corporation, "Session Initiation Protocol Extensions".
[RFC6086] Holmberg, C., Burger, E., Kaplan, H.,, "Session Initiation Protocol (SIP) INFO Method and Package Framework", January 2011, http://tools.ietf.org/html/rfc6086
[bookmark: section_cbbe487732b044b4a1d5b643437f0802][bookmark: _Toc79581079]Overview
This document describes the Extensible Chat Control Over SIP (XCCOS) protocol. The primary scenario for XCCOS is to provide messaging and control mechanisms between users and the server in a persistent multiparty channel communication system, where the system implements access control, content persistency, and message distribution functions.
The following figure shows one sample implementation of such system and the relation between each component.
[image: Sample implementation]
Figure 1: Sample implementation
XCCOS is inherently asynchronous, but stipulates that any client-initiated message is a request/response transaction. While channel-based messaging requires a client to accept messages it did not explicitly request, requiring a response to every client-initiated action allows XCCOS client authors to provide definitive feedback to users rather than attempting to infer the success or failure of a request based on the absence of errors.
This protocol does not provide access or channel management mechanism and assumes channels are provisioned and managed by a different protocol and interface.
[bookmark: section_eec1a3efbff74832b0bf029f2d74f7ae][bookmark: _Toc79581080]Relationship to Other Protocols
XCCOS provides persistent channel communications capabilities by building on top of the SIP INFO as described in [RFC6086], which is itself based on Session Initiation Protocol (SIP) as described in [RFC3261].
XCCOS uses SIP INFO as a delivery mechanism for control messages between XCCOS clients and XCCOS servers. The use of SIP INFO follows the regular SIP session establishment semantics. Within the context of XCCOS, the SIP INFO request carries the XCCOS payload, and SIP INFO response carries the delivery status for the payload to the recipient. The XCCOS payload itself can be an XCCOS request or an XCCOS response. The SIP dialog is established using SIP INVITE.
[image: XCCOS uses XML to encode its payload]
Figure 2: XCCOS uses XML to encode its payload
[bookmark: section_910efeb6b4b441b9a3fbbe601d952549][bookmark: _Toc79581081]Prerequisites/Preconditions
This protocol assumes that both the clients and the server support SIP, and that they implement the extensions described in the following extension specifications as needed:
· Session Initiation Protocol Extensions ([MS-SIP]).
· Session Initiation Protocol Routing Extensions ([MS-SIPRE]).
· Session Initiation Protocol Registration Extensions ([MS-SIPREGE]).
[bookmark: section_d749b83b46f7487fa069ea29d9de39e4][bookmark: _Toc79581082]Applicability Statement
This protocol is applicable when clients and the server support SIP and intend to use one or more features described in this protocol specification.
[bookmark: section_8589b50cdc0c4327a433d74689f72a57][bookmark: _Toc79581083]Versioning and Capability Negotiation
None.
[bookmark: section_4c8ed3a1bcea4d018fa1f023ef770b71][bookmark: _Toc79581084]Vendor-Extensible Fields
The XCCOS protocol uses XML to encode its payload. Extensions are allowed to the extent specified by the XML schema.
[bookmark: section_014a98ca724a4cf28ce7446f34fdcc7f][bookmark: _Toc79581085]Standards Assignments
None.
[bookmark: section_c12438bb0203493b8dade2dcbd6a2757][bookmark: _Toc79581086]Messages
[bookmark: section_0daa5b0eaa6845ffb7f507988a270d76][bookmark: _Toc79581087]Transport
This specification does not introduce a new transport to exchange messages. Messages are exchanged using SIP, as specified in [RFC3261]. SIP messages are transported over Transport Layer Security (TLS).
[bookmark: section_2f7c17ddf08a4739ababa17beb6ac675][bookmark: _Toc79581088]Message Syntax
The following subsections define the message syntax for XCCOS messages, provisioning data, and roaming preferences.
[bookmark: section_862b7f0ddb724f41b9d772f946b35891][bookmark: _Toc79581089]Namespaces
This specification defines and references various XML namespaces using the mechanisms specified in [XMLNS]. Although this specification associates a specific XML namespace prefix for each XML namespace that is used, the choice of any particular XML namespace prefix is implementation-specific and not significant for interoperability.
The following table lists these namespaces, their prefixes, and the reference in which they are specified.
	Prefix
	Namespace URI
	Reference

	
	urn:parlano:xml:ns:xccos
	

	xs
	http://www.w3.org/2001/XMLSchema
	[XMLSCHEMA1]
[XMLSCHEMA2]

XCCOS XML elements are grouped under the "urn:parlano:xml:ns:xccos" namespace. There is currently no hierarchy defined beneath the root of this space, so all elements are defined at the top level.
[bookmark: section_4164ce497a5646368b3f45dede5930d2][bookmark: _Toc79581090]XCCOS syntax
This section specifies in detail the syntax for XCCOS. The XCCOS protocol can be subdivided into two subsections: XCCOS data elements and XCCOS control elements. An XCCOS data element describes the state of the system, or used as a parameter to an XCCOS control element; whereas an XCCOS control element describes the action to be performed.
In this section, all elements and attributes are optional unless otherwise specified. Complete XML schema can be found in Appendix A: Full XML Schema (section 6).
[bookmark: section_cba29e9ba26745778017015e1a4cc20d][bookmark: _Toc79581091]XCCOS data elements
XCCOS data elements are used as parameters in XCCOS commands and represent the payload of XCCOS replies and notifications.
[bookmark: section_eb3779a4161844c1b7db1b84a7e88786][bookmark: _Toc79581092]AuditDataBlock
The AuditDataBlock contains data about when a user/channel was created/updated and the display name of who performed the create/update. This data block is not used by the client. It has the following attributes:
Updatedby (string): Name of the user that performed the update operation.
Updatedon (string): UTC time when the update was performed. It is a string representation of the time format specified in [ISO-8601].
Createdby (string): Name of the user that created the user/category/channel.
Createdon (string): UTC time when the user/category/channel was created. It is a string representation of the time format specified in [ISO-8601].
Example
<audit updatedby="dummy"
 updatedon="2011-04-06T19:23:28.8842419Z"
 createdby="dummy"
 createdon="2011-04-06T19:23:28.8292419Z"
/>
[bookmark: section_e304f085fdc347a79a8408951dc6af7b][bookmark: _Toc79581093]InfoField
The InfoField element is a generic element used to describe a piece of information about its parent. It has the following attribute:
Id (string): This is the name of the information to be conveyed. This attribute is required.
In addition to the attributes, InfoField can have a text value.
Example
<info id="urn:parlano:ma:info:visibility">SCOPED</info>

[bookmark: section_bc45f8691645425b9ff8675577b75e6e][bookmark: _Toc79581094]PropertyField
The PropertyField element is a generic element used to describe a property about its parent. It has the following attribute:
Id (string): This is the name of the information to be conveyed.
In addition to the attribute, the PropertyField can have a Boolean value.
Example
<prop id="urn:parlano:ma:prop:invite">True</prop>
[bookmark: section_3df912fc8f124895ad8485e4270cde8c][bookmark: _Toc79581095]UserInformationDataBlock
The UserInformationDataBlock elements are used to define user data. The use of this element depends on the context in which they are contained. For example, if it appears inside a ChannelInformationDataBlock (section 2.2.2.1.7), it defines the association between the user and the channel. The values of the attributes are retrieved from the Active Directory.
The element name is uib. It contains the following attributes:
uri (string): The SIP URI of the user. This attribute is required.
guid (string): A unique identifier in the form of a GUID string presentation. This attribute is required.
uname (string): The full name of the user; can be different from the SIP URI.
type (positive integer): User type that is the value of 5. This attribute is required.
email (string): The email address of the user.
disabled (Boolean): Specifies whether the user is disabled or not. This attribute is required.
dispname (string): The display name of the user.
company (string): The company the user belongs to.
chperms (integer): The permissions that the user has on the channel when uib is contained within a ChannelInformationDataBlock. This value is a bitmap of permissions. The bitmap is defined in the following table:
	Bit Position
	
Permission

	2
	User can manage the channel

	7
	User can join the channel

	8
	User can chat on the channel

	10
	User can read the chat history of the channel

	11
	User can view the channel

	12
	User can chat in an auditorium channel

path (string): The distinguished name of the user.
id (integer): Optional index used in conjunction with the ChannelInformationDataBlock element (section 2.2.2.1.7) to convey the active participants in a room.
The UserInformationDataBlock also has the following optional elements:
audit: An AuditDataBlock (section 2.2.2.1.1) than defines the audit data for the user.
perms: A UserPermissionDataBlock that is hard-coded as shown in the following example.
aib: A structured representation of type ActiveInformationDataBlock (section 2.2.2.1.22) that represents the active channels and roles for a user. It is used in some notification messages.
from: A structured representation of type From (section 2.2.2.1.6) that is used when the UserInformationDataBlock refers to a role, and specifies where in the node hierarchy the role was defined. This is not useful information anymore because all the roles are now defined locally (in other words, they do not inherit).
Example
<uib uri="sip:user1@example.com"
 guid="93109AFC-D91D-45A1-96F4-6DCBBB31B640"
 type="5"
 uname="User1"
 disabled="false"
 dispname="User1">
 <aib key="11652" value="93489432-b6be-4c67-932f-09e39a162072"
 domain="example.com" />
 <perms inherited="1" inheriting="true" />
</uib>
[bookmark: section_9b47e3e916824fc1a85316789fb1ba41][bookmark: _Toc79581096]GroupInformationDataBlock
The GroupInformationDataBlock elements are used to define group data (group has a broad meaning here because it could represent a domain, an Active Directory container or organizational unit, or Active Directory distribution and security groups). The use of this element depends on the context in which they are contained. For example, if it appears inside a ChannelInformationDataBlock (section 2.2.2.1.7), it defines the association between the group and the channel. The values of the attributes are retrieved from Active Directory.
The element name is gib. It contains the following attributes:
guid (string): A unique identifier in the form of a GUID string presentation. This attribute is required.
name (string): The full name of the group.
type (positive integer): Group type. This attribute is required. Possible values are:
· 8: Domain
· 9: Distribution or security group
· 10: Container or organizational unit
· path (string): The distinguished name of the group.
The GroupInformationDataBlock also has the following optional elements:
audit: An AuditDataBlock (section 2.2.2.1.1) than defines the audit data for the group.
perms: A UserPermissionDataBlock that is not used anymore; content is empty, as shown in the following example.
from: A structured representation of type from (section 2.2.2.1.6) that is used when the GroupInformationDataBlock refers to a role, and specifies where in the node hierarchy the role was defined. This is not useful information anymore because all the roles are now defined locally (that is, they do not inherit).
Example
<gib guid="3025FA98-AFF7-49B7-AF8F-EA956244F173"
 type="9"
 name="The Team"
 path="CN=The Team,OU=Groups,DC=main,DC=example,DC=com">
 <audit updatedby="systemuser"
 updatedon="2011-10-13T02:48:30.4188742Z"
 createdby="systemuser"
 createdon="2011-10-02T21:47:23.9953675Z" />
 <from name="Test Room">ma-chan://example.com/66b00dd5-6f18-4b6c-b51f-f2c7aada05cf</from>
 <perms />
</gib>
[bookmark: section_63a16c0ea74b421ca6b9fa672a987305][bookmark: _Toc79581097]From
This element is present in data blocks that contain the description of where the object described in the data block is defined through the inheritance hierarchy. For scoped users and node creators, this element contains the category where the object is defined. For member and manager lists, the element contains the channel where the object is defined. For principal objects, the element contains the principal group with which the principal is affiliated.
The element name is from and it contains the following attribute:
Name (string): A node or principal name. This attribute is required.
The element value contains the node or principal URL.
[bookmark: section_3b0cc52eca1e4f868f3ae28366002baf][bookmark: _Toc79581098]ChannelInformationDataBlock
The ChannelInformationDataBlock element is a structured representation of information related to a channel. It does not specify a channel object in that it does not require all information about a channel to be present. It is a container which holds the relevant pieces of information required for any operation.
The element name is chanib.
[bookmark: section_81e0c06e720644f5afc6980ae3cee7a6][bookmark: _Toc79581099]Channel Attributes
Immutable attributes are server-assigned and controlled identifiers which the client can see, but can never change directly. This does not mean that the data does not change. The distinction is whether the client can change the value or not.
The immutable attributes pertaining to a channel are:
Uri (string): URI of the room.
Filerepository (string): Not used.
Core attributes are channel Settings which are key identifiers for the channel (such as the list of immutable attributes), or affect channel permissions. Because a change to any of the core attributes can radically modify the access control list (ACL)s of a channel, they MUST be modified through specific commands rather than modifying them as channel meta-data changes.
The following attributes are considered core:
Parent (string): The URI of the parent category.
Behavior (string): Indicates the type of room and also affects the channel permissions including possible user lists, presenter behavior, and display Settings. It MUST have one of the following values:
	Value
	
Meaning

	UNSET
	Value is not known

	NORMAL
	Regular room (all members can post and read chats)

	AUDITORIUM
	Auditorium room (presenters can post, all members can read)

Name (string): The channel name is a user reference to the channel for interacting with the channel before a user has the channel URI. The channel name MUST be unique for the entire domain in which it was created.
Disabled (boolean): Specifies whether the chat room is disabled or not. Core attributes MAY also be required during channel creation. A channel MUST have a specified behavior at the time of channel creation, and unless the behavior is one which includes an automatic category path, the parent category MUST also be specified.
Some attributes are for informational purpose. The following attributes are considered information:
Description (string): Long textual description of the channel.
Keywords (string): Not used.
Topic (string): Not used.
Siopname (string): Name of the Standard Input Output Panel (SIOP) associated with the channel.
Siopurl (anyURI): URI of the SIOP.
Siopid (string): String representation of a GUID that uniquely identifies the SIOP.
OverrideMembers(boolean): Not used.
PartListOff (boolean): Specifies whether participant list updates are enabled or not.
[bookmark: section_451de111d45d48aca357fb0858665ca2][bookmark: _Toc79581100]Channel Elements
The ChannelInformationDataBlock (section 2.2.2.1.7) has the following children elements:
Aib: An ActiveInformationDataBlock (section 2.2.2.1.22) that represents the mapping between roles and users for this chat room.
Audit: An AuditDataBlock that represents the audit details of this particular chat room.
Info: An InfoField data element (section 2.2.2.1.2). Multiple instances of these elements describe information about the chat room.
Prop: A PropertyField data element (section 2.2.2.1.3). Multiple instances of these elements describe the properties of the chat room.
Ace: Not used.
Uset: Not used.
Msg: A GroupChatDataBlock control element (section 2.2.2.2.9). Multiple instances of this element are returned when the chat history is retrieved from the chat room.
members: A RoleList element (section 2.2.2.1.14) that describes the member access control list (ACL) of the chat room.
managers: A RoleList element (section 2.2.2.1.14) that describes the manager ACL of the chat room.
presenters: A RoleList element (section 2.2.2.1.14) that describes the presenter ACL of an auditorium chat room.
[bookmark: section_410c551b276d429cb4d642ab488c439b][bookmark: _Toc79581101]Audit
This is an AuditDataBlock that represents the audit details of this particular channel.
[bookmark: section_5c61c1d83c524f3399054e7c67509883][bookmark: _Toc79581102]Info
Multiple instances of the Info channel element describe information about a channel. The info element has a single attribute:
id (string): A string identifier of the channel "meta-data" type. The meta-data itself is represented by the info element value. The following ids are allowed:
urn:parlano:ma:info:path (string): The hierarchical path of the chat room, starting from the root of the tree. It can be used for display purposes.
urn:parlano:info:filestoreuri(string): A value that represents the URL of the web service to be used for uploading/downloading files.
urn:parlano:ma:info:visibility(string): A value that describes the channel visibility. The value MUST be one of a three-value enumeration of the string literals 'PRIVATE', 'SCOPED', and ‘OPEN’. It defines who can see the chat room and chat room information during queries. It does not affect who can join the chat room.
urn:parlano:ma:info:manager(string): A value that describes a manager (represented as its SIP URI). This is used in some notifications (such as usermodify) to flag which user/participant is a manager in the context of a particular chat room.
urn:parlano:ma:info:ucnt(positive integer): A value that represents the number of current users joined to this chat room.
[bookmark: section_aa91f01785354e9e9ad9c3288ab0de62][bookmark: _Toc79581103]Prop
Multiple instances of the Prop channel element describe properties of the channel. The prop element has a single attribute:
id (string): A string identifier of the channel property. The property is represented by the prop element value.The following ids are allowed:
urn:parlano:ma:prop:logged (boolean): If true, the content of the channel will be logged for historical retrieval of channel participants. This does not mean that conversations are unlogged as all conversations MUST be logged for compliance.
urn:parlano:ma:prop:filepost (boolean): If true, any users of the channel will be allowed to post files to the chat room.
urn:parlano:ma:prop:invite (boolean): If true, users will receive invite notices when they register with the channel server.
[bookmark: section_25ecd00fb713454a8ac791fe24c8b3cf][bookmark: _Toc79581104]msg
The msg element describes a chat message in the channel and is very similar to GroupChatDataBlock (section 2.2.2.2.9).It has the following attributes:
id (string): The value MUST be "grpchat". This attribute is required.
chanUri (string): The value is the URI of the chat room. This attribute is required.
author (string): The value is the SIP URI of the author. This attribute is required.
authdisp (string): The value is the display name of the author. This attribute is required.
alert (boolean): The value tells whether this message is a high priority message. This attribute is required.
chatId (long): This is the message identifier of this particular message. It is unique per channel. This attribute is required.
ts (string): This is the timestamp of the message as perceived by the server. It is a string representation of the time format as specified in [ISO-8601]. This attribute is required.
The msg element has two child elements:
chat (string): The value contains the plain text message content. This element is required.
rtf (string): The value is the Rich Text Format (RTF) representation of the chat element with formatting. This element is optional.
[bookmark: section_a1fe006e923344309ac5c35a91fc66cf][bookmark: _Toc79581105]Examples
The following is an example of a ChannelInformationDataBlock (section 2.2.2.1.7) with embedded msg elements (section 2.2.2.1.7.2.4), which can be obtained through chat history retrieval, content searches, etc.
<chanib uri="ma-chan://example.com/2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 overridemembers="false"
 behavior="UNSET"
 keywords=""
 topic=""
 filerepository=""
 disabled="false">
 <msg id="grpchat"
 chanUri="ma-chan://example.com/2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 author="sip:user1@example.com"
 authdisp="User 1"
 alert="false"
 chatId="77"
 ts="2011-10-21T21:52:47.233Z">
 <chat>Test</chat>
 </msg>
 <msg id="grpchat"
 chanUri="ma-chan://example.com/2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 author="sip:user2@example.com"
 authdisp="User 2"
 alert="false"
 chatId="78"
 ts="2011-10-22T00:21:06.993Z">
 <chat>Test?</chat>
 <rtf>{\urtf1\fbidis\ansi\ansicpg1252\deff0\nouicompat\deflang1033{\fonttbl{\f0\fnil\fcharset0 Segoe UI;}{\f1\fnil Segoe UI;}}{\colortbl ;\red51\green51\blue51;}{*\generator Riched20 15.0.3419 (Debug)}{*\mmathPr\mwrapIndent1440 }\viewkind4\uc1\pard\cf1\f0\fs18 Test?\f1\par}</rtf>
 </msg>
</chanib>
Example of a ChannelInformationDataBlock obtained when joining a channel. It lacks the chat history, but metadata is richer.
<chanib name="GC Testing"
 description="A test room"
 parent="ma-cat://example.com/2642ebba-f56a-4891-9b92-3991eb865c92"
 uri="ma-chan://example.com/2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 overridemembers="false"
 behavior="NORMAL"
 keywords=""
 topic=""
 filerepository=""
 disabled="false">
 <aib key="3456" value="0,2,1,3,4,5,6,7" />
 <aib key="11652" value="1" />
 <audit updatedby="User 1"
 updatedon="2011-10-05T22:10:39.9414558Z"
 createdby="User 2"
 createdon="2011-10-05T22:10:39.9154532Z" />
 <info id="urn:parlano:ma:info:filestoreuri">https://webserver.example.com/mgcwebservice/mgcwebservice.asmx </info>
 <info id="urn:parlano:ma:info:ucnt">8</info>
 <info id="urn:parlano:ma:info:visibility">SCOPED</info>
 <prop id="urn:parlano:ma:prop:logged">True</prop>
 <prop id="urn:parlano:ma:prop:invite">True</prop>
 <prop id="urn:parlano:ma:prop:filepost">True</prop>
</chanib>
[bookmark: section_f99aaa2b6c814f1d8edc28d541417302][bookmark: _Toc79581106]CategoryInformationDataBlock
The CategoryInformationDataBlock element is a structured representation of information related to a category. It does not specify a category object in that it does not require all information about a category to be present. It is a container which holds the relevant pieces of information required for any operation.
The element name is catib.
[bookmark: section_482b871b0cb948a8ac0ebba6ccf8dacc][bookmark: _Toc79581107]CategoryAttributes
Immutable attributes are server-assigned and controlled identifiers which the client can see, but can never change directly. This does not mean that the data does not change. The distinction is whether the client can change the value or not.
The immutable attributes pertaining to a category are:
uri (string): URI of the category
Core attributes are category Settings which are key identifiers for the category (such as the list of immutable attributes), or affect category permissions. Because a change to any of the core attributes can radically modify the scope of a category, they MUST be modified through specific commands rather than modifying them as category meta-data changes.
The following attributes are considered core:
parent (string): The URI of the parent category.
name (string): The category name is a user reference to the category for interacting with the category. The category name MUST be unique for the entire domain it was created in.
Some attributes are for informational purpose. The following attribute is considered informational:
description (string): Long textual description of the category
[bookmark: section_4d37b655355f44d7a8486a81d852eb1e][bookmark: _Toc79581108]Category Elements
info: An InfoField data element (section 2.2.2.1.2).
[bookmark: section_7c960e9874ae4423a6d2d147b9b7b388][bookmark: _Toc79581109]info
There is only one info category element:
urn:parlano:ma:info:path: The hierarchical path of the category, starting from the root of the tree. It can be used for display purposes.
[bookmark: section_e7776e5b718140eeb51da5bec76a9757][bookmark: _Toc79581110]Examples
The following is an example of a CategoryInformationDataBlock (section 2.2.2.1.8)
<catib uri="ma-cat://example.com/2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 name="Category One"
 parent="ma-cat://example.com/49b91e57-b2c9-4f7d-8eb0-0901c7c38f5d"
 description="Category description">
 <info id="urn:parlano:ma:info:path">Category One:Root</info>
</catib>
[bookmark: section_994f02cb1c5a4c83b0080f69c845a842][bookmark: _Toc79581111]ChannelIdsInformationDataBlock
The ChannelIdsInformationDataBlock is used in the join or bjoin commands (specified in section 2.2.2.2.2) to specify which channel the client requests to join. It has the following attributes:
Key (string): Currently not used. The value SHOULD be 0. This attribute is required.
Value (string): The string representation of the GUID, which uniquely identifies the channel in a particular domain. This attribute is required.
Domain (string): The domain of the server. This attribute is required.
Example
<chanid key="0" value="944dc66c-f77f-435c-ae2c-b6b5a8ae7f33" domain="example.com" />
[bookmark: section_16c455c776d946929b636644f22a27cf][bookmark: _Toc79581112]ServerInformationDataBlock
The ServerInformationDataBlock contains the information about the server to which the client is connected. It is used in the getserverinfo command to request server information, or in the getserverinfo reply to return the information. It has the following attributes:
domain (string) Domain to which the server belongs.
infoType (long): A bitmap indicating one of the following values, corresponding to the specified bits:
· None = 0,
· serverTime = 1,
· searchLimit = 2,
· pingInterval = 4,
· dbVersion = 8,
· rootUri = 16,
· messageSizeLimit = 32,
· storySizeLimit = 64,
· serverVersion = 128,
· displayName = 512,
· roomManagementUrl = 1024
When a bit is set, it indicates that the corresponding information is requested (in the case of getserverinfo command) or is retrieved (in the case of getserverinfo reply). This attribute is required.
rootUri: The root node URI.
serverTime (string): Current time of the server in the format specified in [ISO-8601].
searchLimit (int): Maximum number of successful results retrieved for a search command.
pingInterval (string): Not currently used.
PoolId: The database pool ID.
RootCategoryUri: The URI of the root node.
messageSizeLimit (int): Maximum size for grpchat chat content the server would allow.
storySizeLimit (int): Maximum size for grpchat story the server would allow.
clientVersion (string): Client version string.
serverVersion (string): Server version string.
displayName (string): A human readable string of the server name.
roomManagementUrl (string): URL of a web application used to perform room management.
[bookmark: section_7d08f360adf74d4baaff0d4c22c0bd6d][bookmark: _Toc79581113]FilterInformationDataBlock
The FilterInformationDataBlock is used only as a parameter in the cmd:chansrch command as a search filter. The element name is filtib.
[bookmark: section_7fccc16cd0ff410ca9c45a08d806bd04][bookmark: _Toc79581114]Filter Attributes
criteria (string): If specified, this attribute is used for a name search. Individual search terms are separated by a space character.
includeTopic (boolean): This attribute is optional and defaults to false. If set to true, the search includes the channel description in the search.
matchAll (boolean): This attribute is optional and defaults to true. If set to true, the channel name and optionally, the channel description (if includeTopic is set to true) MUST match all terms in the criteria. If set to false, any of the terms MUST match.
matchExactPhrase (boolean): This attribute is optional and defaults to true. If set to true, the entire criteria MUST match as an exact phrase.
catUri (Uri): If specified, the channel MUST also have the specified category as its parent.
addinGuid (string): If specified, the channel MUST also have the specified addin.
disabled (boolean): This attribute is optional. If set to true, the channel MUST be disabled. If missing or set to false, the channel MUST NOT be disabled.
vis (int): If specified, the channel visibility Setting MUST match this attribute. This attribute is an integer value that represents the visibility of a channel according to the following table:
	Value
	
Privacy

	2
	Private

	3
	Scoped

	6
	OPEN

type (int): If specified, the channel behavior MUST match this attribute. The attribute is an integer value that represents the behavior of a channel according to the following table:
	Value
	
Behavior

	4
	Normal

	5
	Auditorium

searchInvites (boolean): This attribute is optional and defaults to false. If set to true, the channel search will consider the value of the attribute invites.
invites (string): This attribute is optional and defaults to "inherit". If set to "inherit", the channel MUST inherit its invite Setting from its parent category. If set to false, the channel MUST explicitly disable invitations.
maxResults (int): If specified, this attribute defines the maximum number of channels to return in the search results.
[bookmark: section_a876f62419ca48898fb89a406b438476][bookmark: _Toc79581115]Filter Elements
member: This element is either a single UserInformationDataBlock or GroupInformationDataBlock. If specified, the channel MUST have the specified user or group as a member.
manager: This element is either a single UserInformationDataBlock or GroupInformationDataBlock. If specified, the channel MUST have the specified user or group as a manager.
[bookmark: section_efce4da4a01a4be19a5acdbfbe97033b][bookmark: _Toc79581116]AceVerbEnum
This simple type is a string enumeration that is used when modifying the access control list (ACL) of channels in the UpdateNode message. The values are:
A: The associated principal is added to the specified ACL.
R: The associated principal is removed from the specified ACL.
X: The associated principal is a complete replacement of the specified ACL.
See section 2.2.2.1.14 for examples.
[bookmark: section_14979fb7d881429a84e747c14af760b9][bookmark: _Toc79581117]Ace
This element is used to describe individual access control entries (ACEs) in an access control list (ACL) of a channel.
[bookmark: section_75e2f9f4b20d4e30b65eef5af2cdf6a0][bookmark: _Toc79581118]Ace Attributes
The Ace element has a single required attribute:
verb (AceVerbEnum): Specifies the action to take with regard to the principal specified in the uib or gib element.
[bookmark: section_81eccaf6b24f4887b5fa3bf5abb4f3b9][bookmark: _Toc79581119]Ace Elements
uib (UserInformationDataBlock): This element describes a user principal.
gib (GroupInformationDataBlock): This element describes a group principal.
See section 2.2.2.1.14 for examples.
[bookmark: section_c614e370b32c4c25a0255481040e8e3d][bookmark: _Toc79581120]RoleList
This element is used to update the access control list (ACL) of a channel or for the server to return an ACL to the client.
[bookmark: section_bfc33f9193d34bd69058c2c66497c0be][bookmark: _Toc79581121]RoleList Elements
prins (Ace): This element is used by a client to modify an access control list (ACL) of a channel. This element can occur multiple times within a RoleList.
uib (UserInformationDataBlock): This element is used by the server to return a user access control entry (ACE) to the client and can occur multiple times within a RoleList.
gib (GroupInformationDataBlock): This element is used by the server to return a group ACE to the client and can occur multiple times within a RoleList.
[bookmark: section_0d71d2cf1dc147c19548d110a5b0fa4e][bookmark: _Toc79581122]RoleList Examples
This is an example of a RoleList used by the client to add a user and a group to an access control list (ACL):
<members>
 <prins verb="A">
 <uib uri="sip:userone@example.com" type="5" disabled="false">
 <perms inherited="1" inheriting="true" />
 </uib>
 </prins>
 <prins verb="A">
 <gib type="3" path="DC=example,DC=com">
 <perms inherited="1" inheriting="true" />
 </gib>
 </prins>
</members>
The following is an example of the server returning an ACL to the client:
<members>
 <uib uri="sip:userone@example.com" guid="06C87F9C-56EA-4280-B5DF-9C4E835022BC" type="5" uname="User One" disabled="false" dispname="User One" path="CN=User One,DC=example,DC=com">
 <audit updatedby="systemuser" updatedon="2012-05-29T22:41:12.0126719Z" createdby="systemuser" createdon="2012-05-29T22:41:12.0126719Z" />
 <from name="User One">sip:userone@example.com</from>
 <perms inherited="1" inheriting="true" />
 </uib>
 <gib guid="792D66BA-3DE3-4D66-A3BC-89E501884237" type="8" name="example" path="DC=example,DC=com">
 <audit updatedby="systemuser" updatedon="2012-05-29T22:41:12.0906804Z" createdby="systemuser" createdon="2012-05-29T22:41:12.0906804Z" />
 <from name="vdomain">ma-grp:792D66BA-3DE3-4D66-A3BC-89E501884237@u.g</from>
 <perms inherited="1" inheriting="true" />
 </gib>
</members>
[bookmark: section_66200225b2eb43b3a3affcdbab272caf][bookmark: _Toc79581123]InviteDataBlock
The InviteDataBlock is used only as a parameter in the getinv command to retrieve channel invitations. The element name is inv and it has the following attributes:
inviteId (unsigned long): This is the sequence number that the client retrieves. If absent, the default value is zero.
register (boolean): If set to true, any channel returned from the getinv reply (specified in section 2.2.2.2.4) is considered acknowledged (registered). Only unregistered invitations will be returned in subsequent getinv commands. If absent, this attribute takes a default value of true.
domain (string): Domain of the server.
[bookmark: section_7b388546656a4e55a4078577271c8e68][bookmark: _Toc79581124]QueryInformationDataBlock
The QueryInformationDataBlock is used as a parameter to search related commands (such as chansrch and getscoped). The element name is qib and it has the following attributes:
qtype (string): This is the query type. It MUST take a value of BYNAME for name search.
Keywords (string): Space separated words used for keywords search (not used).
criteria (string): String used for name search
Recurse (boolean): Not used currently.
extended (boolean): If set to true, the search operation includes extended fields such as description for channel search.
MatchAll (boolean): If set to true, the results include entries that match all components of the criteria. If set to false, the results include entries that match at least one component of the criteria. This parameter applies when the MatchExactPhrase parameter is false.
MatchExactPhrase (boolean): If set to true, the matching is done on the criteria string interpreted as a whole. If set to false, the criteria string is tokenized, and the search is done on individual components. Results are returned for matches of all or any of the components, based on the MatchAll parameter.
Purpose (int): Not used currently.
catUri (Uri): If specified, the entry MUST also have the specified category as its parent.
maxResults (int): If specified, this attribute defines the maximum number of entries to return in the search results.
Example
<qib qtype="BYNAME" criteria="A" extended="false" />
[bookmark: section_00730817e9a94ad09e7749ae79c3b3af][bookmark: _Toc79581125]BcQueryDataBlock
The BcQueryDataBlock is used in retrieval of a contiguous block of messages in the chat history of a channel using the bccontext command (section 2.2.2.2.2) for a particular channel. It has a choice of the following two elements for specifying history range: last and msgid.
In addition to the choice of two elements, BcQueryDataBlock has one optional attribute:
get(boolean): This optional flag turns on or off message retrieval. Setting get to false means the response will only include a count of messages found that match the query. The messages themselves will not be retrieved. The default is true.
[bookmark: section_de60c4c602e9417ea3b356afa639a628][bookmark: _Toc79581126]last
last is a simple element with a single attribute for the retrieval of a specified number of the most recent messages in the channel.
Cnt (unsigned int): This attribute specifies the number of the most recent messages to be retrieved. This attribute is required.
[bookmark: section_d9bfd3dc764742a89947b0f9ec8e8c08][bookmark: _Toc79581127]msgid
The msgid element retrieves a messages from a channel's history using the message identifier. It has the following attributes:
id (unsigned int): This attribute is the message identifier to start a chat history retrieval. This attribute is required.
cnt (unsigned int): This attribute is the number of the chat history to retrieve. This attribute is required.
pre (unsigned int): This attribute specifies the number of messages to return prior to the specified message identifier. If specified, the sum of pre and post MUST NOT be greater than cnt. This is currently not used.
post (unsigned int): This attribute specifies the number of messages to return after the specified message identifier. If specified, the sum of pre and post MUST NOT be greater than cnt.This is currently not used.
jump (boolean): This attribute is currently not used. This value MUST be set to false.
[bookmark: section_3315dfd5bfe94d989c9e58870b7c9fa9][bookmark: _Toc79581128]Example
<bcq>
 <last cnt="100" />
</bcq>
[bookmark: section_c4e6ee04e14041608da671b62effb2e9][bookmark: _Toc79581129]BcSearchDataBlock
The BcSearchDataBlock element is used to search the chat history with the bcbydate or bcbymsg command (section 2.2.2.2.2).
The element name is bcs and it contains one attribute:
Cmp (string): 	This attribute MUST be either "AND" or "OR" and specifies how the matching is done for the text criteria.
BcSearchDataBlock contains the following elements: limit, text, msgId, matchcase, searchbkwds, sortbkwds, date, uib, cib.
[bookmark: section_250c0e71c18a446a85ce1210f785d0d3][bookmark: _Toc79581130]limit
limit is a simple element with a single attribute to specify the maximum number of results to be returned.
Cnt (unsigned int): This attribute specifies the maximum number of results to be returned. This attribute is required.
[bookmark: section_2c9835c3978b4da691965cb5eb1a82c9][bookmark: _Toc79581131]text
The text element specifies the search type in its attribute. Multiple instances of this element are allowed.
Mt (string): This attribute is required; MUST take the value of "PP" (Phrase-Partial), see section 2.2.2.1.18.10.
Phrase-Partial match. The phrase-partial match means the search text MUST be treated as a single unit, but can match only partial words, rather than matching the phrase exactly.
Examples would be:
· Searching for "may" would find "maybe", "may", and "mayflower."
· Searching for "ing can" would find "bringing canned goods."
[bookmark: section_2fb51ec8cdf14b9189a1e77aeac79be0][bookmark: _Toc79581132]msgId
If present, the value of the msgId element MUST be a normalized string specifying the message identifier for which the search is to be performed.
[bookmark: section_3fe8feea648b4f5eb5d76266b1f3eb1a][bookmark: _Toc79581133]matchcase
The value of the matchcase element MUST be a Boolean specifying whether the search is to be case sensitive.
[bookmark: section_8d46bfdd91db41c5aa8c5405193a7fbd][bookmark: _Toc79581134]searchbkwds
The value of the searchbkwds element MUST be a Boolean specifying whether the search is to be performed from the range specified.
[bookmark: section_c2b177631776409eb183a8742f0e8efa][bookmark: _Toc79581135]sortbkwds
The value of the sortbkwds element MUST be a Boolean specifying whether the search result is to be sorted in reverse chronological order, that is, most recent first.
[bookmark: section_a6fc3e6ec91141bb8550d447deeceb26][bookmark: _Toc79581136]date
If present, the date element specifies the date range from which the messages in chat history are to be searched.
From (string): The representation of the starting date range for chat history retrieval as specified in [ISO-8601]. This attribute is required.
To (string): The representation of the ending date range for chat history retrieval as specified in [ISO-8601]. This attribute is required.
[bookmark: section_1b9456e09a11453389eb92c6c8aa292e][bookmark: _Toc79581137]uib
This is a UserInformationDataBlock element (section 2.2.2.1.4). Multiple instances are allowed in the BcSearchDataBlock (section 2.2.2.1.18). If present, only messages authored by the specified users are returned in the search result.
[bookmark: section_5dbe5666f5004502a159d19e5152aa62][bookmark: _Toc79581138]cib
This is a ChannelInformationDataBlock element. Multiple instances are allowed in the BcSearchDataBlock (section 2.2.2.1.18). If present, only messages in the specified channels are returned in the search result.
[bookmark: section_f86da8e1f4ce476e8188a99cdd8bdde3][bookmark: _Toc79581139]Example
<bcs cmp="OR">
 <limit cnt="50" />
 <text mt="PP">mayflower</text>
 <matchcase>true</matchcase>
 <searchbkwds>true</searchbkwds>
 <sortbkwds>true</sortbkwds>
 <date from="2011-10-20T07:00:00Z" to="2011-10-28T06:59:59.9Z" />
 <cib uri="ma-chan://example.com/66b00dd5-6f18-4b6c-b51f-f2c7aada05cf"
 overridemembers="false"
 behavior="UNSET"
 keywords=""
 filerepository=""
 disabled="false" />
</bcs>
[bookmark: section_d9f06f2b713c44d9bb00bf647c191fd3][bookmark: _Toc79581140]ResultCountDataBlock
The ResultCountDataBlock is used to retrieve a count of items in a result and whether there are more results available. The element name is cnt.
It contains the following attributes:
Value (Positive Integer): Count of items.
Over (boolean): True if there are more available items.
Example
<cnt value="1" over="false" />
[bookmark: section_f8565904157d415094fd9dbbf6f0960e][bookmark: _Toc79581141]AssociationDataBlock
The AssociationDataBlock is used in the getassociations command and the getassociations reply. It is used for retrievals of channels associated (either as a member of, or as a manager of) with the current user.
The element name is association, and it contains the following attributes:
Hash (unsigned long): Currently not used.
Domain (string): Domain of the server. (string)
Type (string): The value MUST be either MEMBER for retrieving channels the user is a member of, or MANAGER for retrieving channels the user is a manager of. This attribute is required.
maxResult (unsigned int): This returns the maximum number of results to be returned. If this attribute is absent, it takes a default value of 100.
When used in the getassociations reply, multiple instances of the chanib elements are returned inside the AssociationDataBlock (section 2.2.2.1.20). Each chanib element is a ChannelInformationDataBlock (section 2.2.2.1.7).
[bookmark: section_33db37e764934c199a8bec689a46b255][bookmark: _Toc79581142]HashInformationDataBlock
The HashInformationDataBlock is used to build a generic representation of a hash table. It can be used alone or extended to add additional attributes.
The element name is hash, and it contains the following attributes:
Key (string): The key.
Value (string): The value.
[bookmark: section_162d6aef23e2440cbea43f1102b7194e][bookmark: _Toc79581143]ActiveInformationDataBlock
The ActiveInformationDataBlock represents an extension of a HashInformationDataBlock (section 2.2.2.1.21) that is used in relation to the active users of a chat room.
The element name is aib, and it contains the following attributes:
Key (string): The key (a number identifying the user’s role).
Value (string): This is either a comma-separated set of user indexes in the bjoin and join replies, or a set of chat room GUIDs in the notifications.
Domain (string): The domain of the server.
[bookmark: section_713499fd158e40bd8df850c63f7ff2e4][bookmark: _Toc79581144]FailureInformationDataBlock
The FailureInformationDataBlock represents an extension of a HashInformationDataBlock (section 2.2.2.1.21) that is used to convey the error information in a bjoin reply (section 2.2.2.2.4). The element name is fib, and it contains the following attributes:
key (string): Error description
value (string): A comma-separated set of chat room GUIDs.
domain (string): The domain of the server.
Example
<fib key="OPERATION_FAILED" value="2bdc091e-d8be-45ef-8c24-e28ee1b93a65,df042ddb-550a-4b1b-bfd2-bfd8298ff892" domain="example.com" />
[bookmark: section_d6d1923f626a4dd2b8786aeaad5bece5][bookmark: _Toc79581145]FileTokenDataBlock
The FileTokenDataBlock is used to send a request for a file transfer token to be used later for the actual file transfer. The element name is ftdb. It contains the following attributes:
channelUri (string):	The chat room URI.
fileUrl (string): The URL to the server storage of the posted file.
Example
<ftdb channelUri="ma-chan://example.com/a3f66cba-e7f3-4549-ba96-e971cd65f756"
 fileUrl="ma-filelink://example.com/a3f66cba-e7f3-4549-ba96-e971cd65f756/4634bc9d-1cb5-4966-96fa-41b67168c53f.js/somefile.txt/" />
[bookmark: section_ae1429b3304447a184398b6a12b59ad0][bookmark: _Toc79581146]TokenDataBlock
The TokenDataBlock is used to return a token to be used later in the actual file transfer. The element name is token. It contains the following attributes:
token (string): The token. This attribute is required.
serveruri (string): The URI of the web server that will honor the token.
Example
<token token="1391b791-d106-478b-8096-bca951f49b0f"
 serveruri="https://webserver.example.com/MGCWebService/MGCWebService.asmx" />
[bookmark: section_3cb16c629f674f9a9a82086e76bb650f][bookmark: _Toc79581147]PreferenceDataBlock
The PreferenceDataBlock is used to specify preference Settings. The element name is pref.
It contains the following attributes:
label (string): A label used to distinguish a particular Setting item in a set. This attribute is required.
seqid (positive integer): Sequence number that helps in the detection of version conflicts, for example,when a client tries to update a Setting that has already updated by a different client. This attribute is required.
createdefault (boolean): This attribute is required but is not used.
content (string): The content. It is a base64 encoded zip archive of an XML document that enumerates user Settings.
Example
<pref label="kedzie.UserOptions"
 seqid="543"
 createdefault="false"
 content="H4sIAAAAAAAEAO29B2AcSZYlJi9tynt/SvVlonglongstringH4XyMqyCAAA=" />
[bookmark: section_550db87640f44beebf914b5912d629ba][bookmark: _Toc79581148]Content Format
Legacy user preferences are enumerated in an XML document as shown in the following example:
<parlanoxml ver="1">
 <object asm="CL" type="P.Domain.Channel.GroupChannelPreferencesListManager">
 <member name="_key_" type="S.String" value="GroupChannels" />
 <member name="items" asm="CL" type="PV.GroupChannelPreferencesVO" count="1">
 <item name="0" asm="CL" type="PV.GroupChannelPreferencesVO">
 <member name="_key_" type="S.String"
 value="ma-chan://example.com/b37fd924-8a1f-42e1-9fd9-868d6f811385" />
 <member name="name" type="S.String" value="TestRoom" />
 <member name="chatNotification" asm="CL" type="PV.ChatNotificationPVO">
 <member name="_key_" type="S.String" value="defaultGroupNotification" />
 <member name="floatOnActivate" type="S.Boolean" value="False" />
 <member name="alertFloatOnActivate" type="S.Boolean" value="False" />
 <member name="displayToast" type="S.Boolean" value="True" />
 <member name="alertDisplayToast" type="S.Boolean" value="True" />
 <member name="playSound" type="S.Boolean" value="False" />
 <member name="alertPlaySound" type="S.Boolean" value="True" />
 </member>
 </item>
 </member>
 </object>
</parlanoxml>
The root element is parlanoxml and it has only one child element object whose attribute type MUST be "P.Domain.Channel.GroupChannelPreferencesListManager".The object element MUST have a child member element identifying this object as a collection of channel preferences – its name attribute is "_key_" and the value attribute is "GroupChannels", for example:
 <member name="_key_" type="S.String" value="GroupChannels" />
The object element MUST have a child member element that represents a collection of channel preferences. Its name attribute is "items" and its count attribute is equal to the number of child elements describing individual channel preferences, for example:
 <member name="items" asm="CL" type="PV.GroupChannelPreferencesVO" count="4">
The items collection is represented by a number of item elements; the name attribute of such an item is equal to the item index in the items sequence, for example:
 <item name="0" asm="CL" type="PV.GroupChannelPreferencesVO">
The item element MUST have a child member element whose name attribute is "_key_" and whose value attribute is the channel Uniform Resource Identifier (URI).
The item element MUST have a child member element whose name attribute is "name" and whose value attribute is the channel name.
The item element MUST have a child member element whose name attribute is "chatNotification" and whose type attribute is "PV.ChatNotificationPVO". This element serves as a container for various channel notification Settings, for example:
 <member name="chatNotification" asm="CL" type="PV.ChatNotificationPVO">
This element MUST have a child member element whose name attribute is "_key_" and whose value attribute is "defaultGroupNotification". The item element MAY also have one or more child member elements describing individual notifications. The following Boolean notification Settings are used:
	Boolean notification
	Description

	floatOnActivate
	Open a separate channel window on new message arrival.

	alertFloatOnActivate
	Open a separate channel window on new high importance message arrival.

	displayToast
	Display a toast on new message arrival.

	alertDisplayToast
	Display a toast on new high importance message arrival.

	playSound
	Play sound on message arrival.

	alertPlaySound
	Play sound on high importance message arrival.

[bookmark: section_48a51cfb13a54a64b5eb55cbfa45ce11][bookmark: _Toc79581149]ResponseBlock
The ResponseBlock is a container for error response messages and codes. The element name is resp.
It contains the following attribute:
Code (Positive integer): An error code which MUST conform to a range similar to Hypertext Transfer Protocol (HTTP) with classes divided by the 100's. Possible values are between 100 and 699, and include informational, success, redirection, client error, server error, and transport error bands. This attribute is required.
[bookmark: section_df39d9e5375a438aa7340141d82109d8][bookmark: _Toc79581150]XccosCommandDataBlock
The XccosCommandDataBlock is the container for all data elements necessary in commands. The contents are very free-form and validation is left up to the user based on the type of protocol message that is being transmitted and what is required for a valid message.
The element name is data.
The elements that can be contained are:
	Type
	Name
	Count

	ChannelInformationDataBlock
	chanib
	max 1

	UserInformationDataBlock
	uib
	max 1

	GroupInformationDataBlock
	gib
	max 1

	BcQueryDataBlock
	bcq
	max 1

	BcSearchDataBlock
	bcs
	max 1

	QueryInformationDataBlock
	qib
	max 1

	PreferenceDataBlock
	pref
	max 1

	FileTokenDataBlock
	ftdb
	max 1

	ChannelIdsInformationDataBlock
	chanid
	many

	ServerInformationDataBlock
	sib
	max 1

	InviteDataBlock
	inv
	max 1

	AssociationDataBlock
	association
	max 1

	FilterInformationDataBlock
	filtib
	max 1

[bookmark: section_0db5543a43df4b22a579cbf68f1014bc][bookmark: _Toc79581151]XccosReplyNoticeDataBlock
The XccosReplyNoticeDataBlock is the container for all data elements necessary in replies and notices. The contents are very free-form and validation is left up to the user based on the type of protocol message that is being transmitted and what is required for a valid message. The XccosReplyNoticeDataBlock MUST allow multiple copies of the top-level data elements to satisfy commands that span many top-level things, such as chat history searches across multiple messaging targets.
The element name is data.
The elements that can be contained are:
	Type
	Name
	Count

	ChannelInformationDataBlock
	chanib
	many

	CategoryInformationDataBlock
	catib
	many

	UserInformationDataBlock
	uib
	many

	GroupInformationDataBlock
	gib
	many

	FailureInformationDataBlock
	fib
	many

	HashInformationDataBlock
	hash
	many

	ResultCountDataBlock
	cnt
	max 1

	PreferenceDataBlock
	pref
	max 1

	TokenDataBlock
	token
	max 1

	xs:nonNegativeInteger
	status
	max 1

	ServerInformationDataBlock
	sib
	max 1

	GroupChatDataBlock
	grpchat
	max 1

	AssociationDataBlock
	association
	max 1

	SiopWhitelistDataBlock
	siops
	max 1

	String
	tag
	max 1

[bookmark: section_c0c7797ee8b7454ea9c048c14b9dbbc1][bookmark: _Toc79581152]XCCOS Control Elements
The XCCOS XML document is built from five "primitive" element definitions. These primitive elements are the high-level actions that the client and server can perform, those being:
· Commands (requests from client to server),
· Replies (responses to Commands from server to client),
· Notices (asynchronous updates to the system state sent from server to client),
· Errors, and
· System Notifications.
Command, Reply, and Notice primitives are intended to carry data between the endpoints. Therefore, each defines a data block, which is an element containing any number of informational elements required by the primitive messages. These data blocks are split into client-side (Command) and server-side (Reply and Notice) blocks because of the nature of the interactions.
The client MUST be specific in its request so that the server’s response is useful and unambiguous to the client, while the server MUST be free to include all necessary data for the message.
[bookmark: section_713455fd7c4b494e85251cad34d40454][bookmark: _Toc79581153]XccosControlPrimitive
The XccosControlPrimitive element is the top level document element, which contains header information for tying independent messages together into a logical session. It carries commands, replies, notices, and errors between client and server through a message-oriented protocol (such as SIP/SIMPLE).
The element name is xccos, and it contains the following attributes:
ver (positive integer): Version of the protocol. Currently it is "1".
envid (positive integer): A monotonically increasing number identifying an xccos document. The embedded primitives are uniquely identified by the <Envid, SeqId of the primitive> tuple.
The following elements can be contained, in any number:
	Type
	Name
	Description

	XccosCommandPrimitive
	cmd
	Command (from client to server)

	XccosReplyPrimitive
	rpl
	Reply (from server to client, can be in response to a command)

	XccosNoticePrimitive
	ntc
	Notice (from server to client, unsolicited)

	XccosErrorPrimitive
	err
	Error (from server to client, in response to a command)

	XccosSystemPrimitive
	sys
	System notification from server, unsolicited

	GroupChatDataBlock
	grpchat
	A chat message. For historical reasons this is not modeled by a primitive. This message flows in both directions (client to server and vice-versa).

Example
<xccos ver="1" envid="6698699123101735680" xmlns="urn:parlano:xml:ns:xccos">
 <cmd id="cmd:bjoin" seqid="1">
 <data>
 <chanid key="100"
 value="93489432-b6be-4c67-932f-09e39a162072,2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 domain="example.com" />
 </data>
 </cmd>
 <cmd id="cmd:getpref" seqid="2">
 <data>
 <pref label="kedzie.ShowFeature" seqid="3" createdefault="true" />
 </data>
 </cmd>
</xccos>
[bookmark: section_58659c040f934c2aa9be23423d45e381][bookmark: _Toc79581154]XccosCommandPrimitive
The XccosCommandPrimitive element conveys a command from client to server with a request for an operation to be performed.
The name of the element is cmd, and it contains the following attributes:
id (string): The name of the command. This attribute is required. The following is a list of allowed values:
	id
	Purpose

	cmd:bjoin
	Batch chat room joining

	cmd:bccontext
	Get chat history

	cmd:bcbydate
	Search chat content by date

	cmd:bcbymsg
	Search chat content by message

	cmd:cateffquery
	Get category effective details

	cmd:chancreate
	Creates a chat room

	cmd:chaneffquery
	Get chat room effective details

	cmd:chansrch
	Search for chat rooms

	cmd:chanmodify
	Modifies explicit chat room Settings

	cmd:usrsrch
	User search in Active Directory (by first, last name and email)

	cmd:qeulmem
	Get membership

	cmd:getassociations
	Get rooms I am a member of or I am a manager of

	cmd:nodespermcreatechild
	Get list of categories where the user is a creator

	cmd:qeulmgr
	Get managership

	cmd:getpl
	Get list of participants

	cmd:getpref
	Get user preferences

	cmd:getscoped
	Gets list of eligible principals (other than presenters) for roles

	cmd:getscopedvoice
	Gets list of eligible presenters for roles

	cmd:getdetails
	Get user/principal details

	cmd:getuserchannels
	Get channels a user is joined to

	cmd:getfutok
	Get file upload token

	cmd:getfdtok
	Get file download token

	cmd:qeulvoiced
	Get presenters

	cmd:join
	Join single chat room

	cmd:chaninfo
	Gets explicit channel details

	cmd:sacemgr
	Modify manager list

	cmd:sacemem
	Modify member list

	cmd:sacevoiced
	Modify presenter list

	cmd:part
	Leave chat room

	cmd:requri
	Get Channel Server Uniform Resource Identifier (URI)

	cmd:setpref
	Set user preferences

	cmd:getserverinfo
	Get global server information

	cmd:getinv
	Get invites

	cmd:updatenode
	Update node

	cmd:getroomperms
	Get room permissions

Seqid (positive integer): A monotonically increasing number identifying a primitive in the context of the embedding xccos element (section 2.2.2.2.1).
XccosCommandPrimitive element can contain any amount of data within the data element of the type XccosCommandDataBlock (section 2.2.2.1.28), which is required to complete the command request.
Example
 <cmd id="cmd:bjoin" seqid="1">
 <data>
 <chanid key="100"
 value="93489432-b6be-4c67-932f-09e39a162072,2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 domain="example.com" />
 </data>
 </cmd>
[bookmark: section_eaefe36376444cb6926a569e9dc75220][bookmark: _Toc79581155]XccosMessageIdentifier
The XccosMessageIdentifier element is used to uniquely identify a message. The element name is either commandid (when contained in XccosReplyPrimitive (section 2.2.2.2.4) and XccosErrorPrimitive (section 2.2.2.2.6)) or originatingMessageId (when used in a GroupChatDataBlock (section 2.2.2.2.9)).
It contains the following attributes:
Seqid (positive integer): The sequence identification of the message inside its embedding xccos document. This attribute is required.
Envid (positive integer): The envelope identifier of the embedding xccos document. This attribute is required.
[bookmark: section_85383d6899ad43ca995b1cdc1ea6c17b][bookmark: _Toc79581156]XccosReplyPrimitive
The XccosReplyPrimitive element, or Reply primitive, is a server response to a client Command request. It MUST contain the sequence identifier and request identifier of the command it references, and it MUST contain a response statement.
If the reply MUST transmit data, a data block containing information is allowed, but is not required.
The name of the element is rpl, and it contains the following attributes:
id (string): The name of the reply. This attribute is required. The following is a list of allowed values.
	id
	
Purpose

	rpl:bjoin
	Batch chat room joining

	rpl:bccontext
	Get chat history

	rpl:bc
	Search chat content by date or message

	rpl:cateffquery
	Get category effective details

	rpl:chancreate
	Creates a chat room

	rpl:chaneffquery
	Get chat room effective details

	rpl:chansrch
	Search for chat rooms

	rpl:chanmodify
	Modifies explicit chat room Settings

	rpl:usrsrch
	User search in Active Directory (by first, last name and email)

	rpl:qeulmem
	Get membership

	rpl:getassociations
	Get rooms I am a member of or I am a manager of

	rpl:nodespermcreatechild
	Get list of categories where the user is a creator

	rpl:qeulmgr
	Get managership

	rpl:getpl
	Get list of participants

	rpl:getpref
	Get user preferences

	rpl:getscoped
	Gets list of eligible principals (other than presenters) for roles

	rpl:getscopedvoice
	Gets list of eligible presenters for roles

	rpl:getdetails
	Get user/principal details

	rpl:getuserchannels
	Get channels a user is joined to

	rpl:getftok
	Get token for file upload or download

	rpl:qeulvoiced
	Get presenters

	rpl:join
	Join single chat room

	rpl:chaninfo
	Gets explicit channel details

	rpl:sacemgr
	Modify manager list

	rpl:sacemem
	Modify member list

	rpl:sacevoiced
	Modify presenter list

	rpl:part
	Leave chat room

	rpl:setpref
	Set user preferences

	rpl:getserverinfo
	Get global server information

	rpl:getinv
	Get invites

	rpl:grpchat
	Reply for a local chat post

	rpl:updatenode
	Reply for update node

	rpl:getroomperms
	Reply for get room permissions

seqid (positive integer): A monotonically increasing number identifying a primitive in the context of the embedding xccos element (section 2.2.2.2.1).
The following are elements that SHOULD be contained within the XccosReplyPrimitive element:
commandid: This is an element of type XccosMessageIdentifier (section 2.2.2.2.3) identifying the command that is at the origin of the current reply.
resp: This is an element of type ResponseBlock (section 2.2.2.1.27) containing an error code
data: This is an element of type XccosReplyNoticeDataBlock (section 2.2.2.1.29) that contains the reply info.
Example
<rpl id="rpl:chaneffquery" seqid="1">
 <commandid seqid="1" envid="6698699123101735684" />
 <resp code="200">SUCCESS_OK</resp>
 <data>
 <chanib name="test"
 description=""
 parent="ma-cat://example.com/2642ebba-f56a-4891-9b92-3991eb865c92"
 uri="ma-chan://example.com/93489432-b6be-4c67-932f-09e39a162072"
 overridemembers="false"
 behavior="NORMAL"
 keywords=""
 topic=""
 filerepository=""
 disabled="false">
 <audit updatedby="Joe 1"
 updatedon="2011-10-24T21:11:22.3429958Z"
 createdby="Joe 2"
 createdon="2011-10-24T21:11:22.1489764Z" />
 <info id="urn:parlano:ma:info:filestoreuri">
 https://webserver.example.com/mgcwebservice/mgcwebservice.asmx
 </info>
 <info id="urn:parlano:ma:info:ucnt">2</info>
 <info id="urn:parlano:ma:info:visibility">SCOPED</info>
 <prop id="urn:parlano:ma:prop:logged">True</prop>
 <prop id="urn:parlano:ma:prop:invite">True</prop>
 <prop id="urn:parlano:ma:prop:filepost">True</prop>
 </chanib>
 </data>
</rpl>
[bookmark: section_02527951fa15456a81b54e1383a185d3][bookmark: _Toc79581157]XccosNoticePrimitive
The XccosNoticePrimitive element is an asynchronous update from a server to a client. These elements happen only when the server wants to transmit information to the client, so a data block MUST be present as well.
The name of the element is ntc, and it contains the following attributes:
id (string): name of the notice. This attribute is required. The following is a list of allowed values:
	id
	Purpose

	ntc:bjoin
	Notification that a user has joined one or more chat rooms.

	ntc:chanmodify
	Notification of info/prop attribute changes on the chat room.

	ntc:usermodify
	Alert for permissions changes of other chat room participants.

	ntc:invite
	Notification for a chat room invitation.

	ntc:join
	Notification that a user has joined a chat room.

	ntc:kick
	Notification that the user has been removed from the chat room.

	ntc:part
	Notification that some other user has left the chat room.

	ntc:pl
	Notification that participant updates have been turned on.

	ntc:ploff
	Notification that participant updates have been turned off.

	ntc:quit
	Notification that some other user disconnected from Group Chat. It is sent to any user that shares a chat room with the quitting one.

	ntc:chatmodify
	Notification that the chat was modified in a room.

seqid (positive integer): a monotonically increasing number identifying a primitive in the context of the embedding xccos element (section 2.2.2.2.1).
XccosNoticePrimitive MUST contain any amount of data within the data element of the type XccosReplyNoticeDataBlock (section 2.2.2.1.29), which is required to convey the notification information to the client.
Example
<ntc id="ntc:join" seqid="1">
 <data>
 <uib uri="sip:joe1@example.com"
 guid="E0F5F93A-1496-43E5-BCDB-011E6FA3189D"
 type="5"
 uname="Joe 1"
 disabled="false"
 dispname="Joe 1">
 <aib key="3456"
 value="2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 domain="example.com" />
 <perms defined="1" inherited="1" inheriting="true" />
 </uib>
 </data>
</ntc>
[bookmark: section_27c9f9cfff8d4be1aaecfb6258ffedfe][bookmark: _Toc79581158]XccosErrorPrimitive
The XccosErrorPrimitive element, or Error primitive, is an acknowledgement from server to client when a more specific message is not possible. This includes channel messages that are rejected, commands that are not understood, and control blocks that contain no data or bad data. In all cases, a more specific reply to command is desired when possible.
The Error MUST contain a sequence identifier that it refers to. If it is responding to a command block, it can also contain a request identifier. Errors that do not reference a specific message are not allowed as the client would not understand the purpose.
The name of the element is err, and it contains the following attributes:
Id (string): The name of the error message. This attribute is required and MUST be "error".
Seqid (positive integer): A monotonically increasing number identifying a primitive in the context of the embedding xccos element (section 2.2.2.2.1).
The following are elements that can be contained within the XccosErrorPrimitive element:
Commandid: This is an element of type XccocsMessageIdentifier (section 2.2.2.2.3) identifying the command that is at the origin of the current reply.
Resp: This is an element of type ResponseBlock (section 2.2.2.1.27) containing an error code.
[bookmark: section_6fa1373fb1f043d09ed00305c9854a44][bookmark: _Toc79581159]XccosSystemStatusDataBlock
The XccosSystemStatusDataBlock is a simple element that conveys the busy/available states of the sender to the receiver.
The name of the element is status, and it contains the following attribute:
Busy (boolean): True, if the sender is busy and it cannot process messages; false otherwise.
[bookmark: section_692dcd18c3a0411395f06129d0d6045f][bookmark: _Toc79581160]XccosSystemPrimitive
XccosSystemPrimitive element is used for carrying system messages to the client. The name of the element is sys, and it contains the following attributes:
Id (string): The name of the system message. This attribute is required, and MUST be "sys:status".
Seqid (positive integer): A monotonically increasing number identifying a primitive in the context of the embedding xccos element (section 2.2.2.2.1).
The following element can be contained within the XccosSystemPrimitive element:
Status: This element is of type XccosSystemStatusDataBlock (section 2.2.2.2.7), and contains the free/busy status of the sender.
[bookmark: section_ec74c33ba0034354afd61ad2ee54303d][bookmark: _Toc79581161]GroupChatDataBlock
The GroupChatDataBlock element is used to send and receive chats. It differs slightly from the other primitive elements by not following the command/reply/notice pattern.
The name of the element is grpchat, and it contains the following attributes:
id (string): The name of the message. This attribute is required, and MUST be "grpchat".
seqid (positive integer): A monotonically increasing number identifying a primitive in the context of the embedding xccos element (section 2.2.2.2.1).
chanUri (string): The chat room URI. This attribute is required.
author (string): The chat author’s SIP URI. This attribute is required.
authdisp (string): The author’s name of the chat. This attribute is required, but can be empty when sent by the client.
alert (boolean): True, if the chat is an alert. This attribute is required.
chatId (Long integer): The chat identifier uniquely identifying the chat in the chat room. This attribute is required, but it can be 0 when sent by client because the value is generated by the server.
ts (ISO8601 time string): The timestamp of the chat message as computed by the client (when sent by the client) or as generated by the server (when sent by the server), as specified in [ISO-8601]. This attribute is required.
The following elements can be contained within the GroupChatDataBlock element:
OriginatingMessageId: This is an element of type XccosMessageIdentifier (section 2.2.2.2.3) that identifies the original client to server grpchat message.
Chat: The value of this element is the plain text representation of the chat content.
Rtf (optional): The value of this optional element is the Rich Text Format (RTF) representation of the chat content.
Example
<grpchat id="grpchat"
 seqid="1"
 chanUri="ma-chan://example.com/93489432-b6be-4c67-932f-09e39a162072"
 author="sip:joe1@example.com"
 authdisp="Joe 1"
 alert="false"
 chatId="25"
 ts="2011-10-27T21:09:50.247Z">
 <originatingMessageId seqid="1" envid="6698699123101735682" />
 <chat>Hello World!</chat>
</grpchat>
[bookmark: section_7a3d1e15c6834ed5916e8e5bda9bc984][bookmark: _Toc79581162]Protocol Details
[bookmark: section_0965341d43ae492d91c1a24f4e99ab03][bookmark: _Toc79581163]Client Details
The client details are broken down into specific functionality. Each subsection defines the functionality in detail. The client also maintains some state for each channel. The state is specified in the common channel state section. Each specific functionality also defines the abstract data model specific to that functionality as needed.
[bookmark: section_8e8292c2e8c34ecd8d1a527580b65927][bookmark: _Toc79581164]Common Channel State
The client SHOULD maintain the following state for each channel. Their data structure and use is as follows:
ParticipantList
· A list of strings where each entry is a SIP URI that represents a current participant of that channel.
· LastReceivedMessageIdMessage identifier of the most recent chat message that the client received.
[bookmark: section_1503daa31ec04241bbd14674f11cc7a9][bookmark: _Toc79581165]Sending XccosCommandPrimitives
With the exception of GroupChatDataBlock, all XccosControlPrimitives sent by the client are XccosCommandPrimitives. This section describes the behavior for sending XccosCommandPrimitives, as well as the specific behavior for specific commands.
[bookmark: section_d9946c07c14a4d7999ffacc5ff0b338e][bookmark: _Toc79581166]XccosCommandPrimitive transaction handling
In XCCOS, commands are transactional in nature. If the client sends a specific command, a corresponding reply is expected to be returned. This section describes the behavior for matching the reply to its associated command.
[bookmark: section_6feb7f4973d64c2ca88f1c645cd212ae][bookmark: _Toc79581167]Abstract Data Model
A data structure called CmdId is used to uniquely identify a command and its corresponding reply. It consists of 2 fields:
EnvId (64bit unsigned integer)
SeqId (64bit unsigned integer).
[bookmark: section_8774c6e6b52547db89d955689329658a][bookmark: _Toc79581168]Timers
The client defines an XccosTransactionTimer to track the completion for each command. This timer is started when the command is sent. It has a value of 10 seconds.
[bookmark: section_9278a4fa946a44bebb5ce2af52bf9006][bookmark: _Toc79581169]Initialization
When the client sends a command, it MUST construct a CmdId and set the EnvId with the value of envid in the parent XccosControlPrimitive. It MUST also assign a value in the seqid for the XccosCommandPrimitive. The corresponding CmdId MUST take the same value in the SeqId. When multiple XccosCommandPrimitives are present in the same XccosControlPrimitive (and therefore are using the same EnvId in the CmdId), the client MUST assign unique seqids between the different XccosCommandPrimitives within the same XccosControlPrimitive (and therefore MUST use unique SeqId across the different CmdId, even though the EnvId are the same). A sent command that has not received a reply, or a timeout, or other error condition for termination is considered pending.
[bookmark: section_0267f59ee26044a3879a5d8532b16d06][bookmark: _Toc79581170]Higher-Layer Triggered Events
The user can initiate cancelation of the XCCOS command. In such event, the XccosTransactionTimer is cancelled. The command is considered terminated and no corresponding reply for the command is processed.
[bookmark: section_7475d9c39146431a8f0c4b6696533d14][bookmark: _Toc79581171]Message Processing Events and Sequencing Rules
When the client receives an XccosControlPrimitive, the client first checks the XccosControlPrimitive for schema compliance. If it is not compliant with the schema, the XccosControlPrimitive is dropped. If a valid XccosControlPrimitive that contains XccosReplyPrimitives is received, for each XccosReplyPrimitive, the client MUST perform the following matching algorithm:
1. Inspect the commandid XccosMessageIdentifier. If none is present, the XccosReplyPrimitive is dropped.
2. Retrieve the value of seqid from the commandid. If none is present, the XccosReplyPrimitive is dropped.
3. Retrieve the value of envid from the commandid. If none is present, the XccosReplyPrimitive is dropped.
4. Find pending commands with CmdId having EnvId equal to the envid retrieved from the XccosReplyPrimitive, and SeqId equal to the seqid retrieved from the XccosReplyPrimitive. If there is no match, the XccosReplyPrimitive is dropped.
5. Retrieve the code attribute value from the ResponseBlock of the XccosReplyPrimitive. If none is present, the XccosReplyPrimitive is dropped.
6. Retrieve the value of the id attribute from the XccosReplyPrimitive. If the value is not a reply id corresponding to the original commandid, the XccosReplyPrimitive is dropped. That is, if the original commandid is "cmd:join", the client would drop a reply with id "rpl:bjoin", but not drop a reply with id "rpl:join".
If the XccosReplyPrimitive is not dropped, the XccosReplyPrimitive is deemed a reply to the original command, and the command is considered terminated. The corresponding XccosTransactionTimer will be cancelled. The value retrieved from the ResponseBlock in step 5, along with the XccosReplyPrimitive is passed on to the corresponding command handler for further processing.
The value of the code attribute retrieved from the ResponseBlock in step 5 is interpreted as follows: if the value equals 200, the client MUST treat the request as successful; for any other value, the client MUST treat the request as a failure.
[bookmark: section_b08ac254c0bb40fca958e69016477ad0][bookmark: _Toc79581172]Timer Events
If the XccosTransactionTimer is fired, the corresponding command is deemed to have terminated. This fact is passed to the corresponding command handler for further error handling and cleanup where deemed necessary.
[bookmark: section_fcc94a2ff8dd4a0799a3795ec49b451a][bookmark: _Toc79581173]Other Local Events
If the underlying SIP INFO carrying the XccosCommandPrimitive has failed, the command is considered terminated. This fact is passed to the corresponding command handler for further error handling and cleanup where deemed necessary.
[bookmark: section_962070fbb0fa4066bf2b278390c784ca][bookmark: _Toc79581174]Requesting Channel Server URI
After the client establishes a SIP dialog with the server, the client can send a command to request the channel server URI to handle further XCCOS requests.
[bookmark: section_8e271127e6664e43a050bc54c5deb7b7][bookmark: _Toc79581175]Abstract Data Model
None.
[bookmark: section_d61e7316b082468f9f39cfe89c91cecb][bookmark: _Toc79581176]Timers
None.
[bookmark: section_c5034586f8f640fc93736ddbc7bca90b][bookmark: _Toc79581177]Initialization
The client MUST construct the XccosCommandPrimitive with an id value of cmd:requri. The client MUST send a XccosCommandDataBlock without any value.
[bookmark: section_ff2c1bd03b28434bb8e2299f9ba517e1][bookmark: _Toc79581178]Higher-Layer Triggered Event
None.
[bookmark: section_706f8201d81343cab7f9bd1d539f4787][bookmark: _Toc79581179]Message Processing Events and Sequencing Rules
If the client receives a failure reply (section 3.1.2.1.5), the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, the client MUST look for a UserInformationDataBlock inside the XccosReplyNoticeDataBlock. If the UserInformationDataBlock is present, the client MUST retrieve the value from the uri attribute inside the UserInformationDataBlock. The client MUST then terminate the existing dialog with the server by sending a SIP BYE request for both successful and failed cases.
If the uri attribute inside the UserInformationDataBlock is present, the client SHOULD establish a new dialog with this URI.
[bookmark: section_cd9baade4d6b4e1cb2aa241da71e3086][bookmark: _Toc79581180]Timer Events
None.
[bookmark: section_16e47dab5965481b8fe964fbad3de871][bookmark: _Toc79581181]Other Local Events
None.
[bookmark: section_d0affaef3a074a94aa5bea560151ffe3][bookmark: _Toc79581182]Retrieving Server Information
The following section describes the logic for retrieving server information from the channel server URI retrieved (section 3.1.3).
[bookmark: section_239ebc496c83441e9105fc54037e5442][bookmark: _Toc79581183]Abstract Data Model
None.
[bookmark: section_7cf69aa6b4ee4db4b37e08a99af072c8][bookmark: _Toc79581184]Timers
None.
[bookmark: section_71ec29c5d02c4db39b7aa545c2de12d2][bookmark: _Toc79581185]Initialization
The client MUST construct the XccosCommandPrimitive with an id value of cmd:getserverinfo. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set a ServerInformationDataBlock. Inside the ServerInformationDataBlock, the client MUST set the domain attribute with the domain of the server. The client MUST also set an integer value representing a bitmap for the infoType attribute. The bitmap values are defined in section 2.2.2.1.10. The client SHOULD use the following bitmap values: serverTime, searchLimit, pingInterval, PoolId, RootCategoryUri, messageSizeLimit, storySizeLimit, serverVersion, and displayName. The client MUST also set its own version string value in the clientVersion attribute.
[bookmark: section_3ab908173a104069ade1b3bfb0f8a777][bookmark: _Toc79581186]Higher-Layer Triggered Events
None.
[bookmark: section_d3435996625c44748b681559f7ac8af6][bookmark: _Toc79581187]Message Processing Events And Sequencing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5,, the client MUST tear down the SIP INVITE dialog. The client uses the values of the following attributes of the ServerInformationDataBlock:
displayName: The friendly display name of the server pool.
roomManagementUrl: The URL of a web application used to perform room management.
[bookmark: section_66e7fa23575343a7878792defccbcf8d][bookmark: _Toc79581188]Timer Events
None.
[bookmark: section_66121f6453c74114b36c526c8ce9d451][bookmark: _Toc79581189]Other Local Events
None.
[bookmark: section_a91544f649a24e01acd2bda09b8db743][bookmark: _Toc79581190]Joining A Channel
The client can retrieve the channel URI from searches (section 3.1.9), invitations (section 3.1.10), or associated channel retrieval (section 3.1.11). The following sections specify how the client joins one particular channel.
[bookmark: section_dc6cb8e45dd446b5ade355c7eb7ca27b][bookmark: _Toc79581191]Abstract Data Model
The client SHOULD use a map structure, UserInfoMap, where the key is an integer and the value is a string, for transient processing. The client also uses the ParticipantList defined in section 3.1.1.
[bookmark: section_f09e7292808b404e81c3d360a35b5815][bookmark: _Toc79581192]Timers
None.
[bookmark: section_a8152b41c1fa4380849198ae12d5543e][bookmark: _Toc79581193]Initialization
The client MUST construct the XccosCommandPrimitive with an id value of cmd:join. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one ChannelIdsInformationDataBlock. The value attribute MUST be set to the GUID string of the channel URL. The domain attribute MUST be set to the server domain.
[bookmark: section_5930ff36f13347ba87b2adf0df939894][bookmark: _Toc79581194]Higher-Layer Triggered Events
None.
[bookmark: section_d108474dfbba46c4a9e8bfd10b3a420d][bookmark: _Toc79581195]Message Processing Events And Sequencing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, the client MUST look for a ChannelInformationDataBlock inside the XccosReplyNoticeDataBlock. For each UserInformationDataBlock inside the ChannelInformationDataBlock, the client MUST inspect the id attribute, and the uri attribute. If a UserInfoMap is defined, the client SHOULD add an entry into the map with the id attribute as the key and the uri attribute as the value. Once processing of all UserInformationDataBlocks is done, the client SHOULD inspect the ActiveInformationDataBlock within the ChannelInformationDataBlock. If an ActiveInformationDataBlock is present, the client takes the value of the value attribute. This value is a comma-separated string of the keys for the UserInfoMap. For each key in the comma-separated string, the client SHOULD retrieve the associated value from the UserInfoMap, and add an entry to the ParticipantList. After processing of the comma-separated key string, the resultant ParticipantList represents the current participants in the channel. The client SHOULD also retrieve the value of the name attribute to be used as the display name and the description attribute to be used as the description in the UI.
[bookmark: section_e4a82bed6a084851bd7f3b282ae83b83][bookmark: _Toc79581196]Timer Events
None.
[bookmark: section_e77552c5b912438a8e583a440cc0a310][bookmark: _Toc79581197]Other Local Events
None.
[bookmark: section_6b06876361264fcc9daf7e06405d7627][bookmark: _Toc79581198]Joining Multiple Channels
The client also supports joining multiple channels simultaneously. This section describes the process to join multiple channels.
[bookmark: section_370d0d68bdb1497e836cc543fdda2e4a][bookmark: _Toc79581199]Abstract Data Model
The client SHOULD maintain a ParticipantList for each channel it wants to join, and a UserInfoMap for transient processing. ParticipantList is defined in section 3.1.1, and UserInfoMap is defined in section 3.1.5.1.
[bookmark: section_002ef05a45724ec2aa6e2e3b191c5afb][bookmark: _Toc79581200]Timers
None.
[bookmark: section_8f1d65c8692d4c289238d6603fd24ee0][bookmark: _Toc79581201]Initialization
The client MUST construct the XccosCommandPrimitive with an id value of cmd:bjoin. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one ChannelIdsInformationDataBlock. The value attribute MUST be set to a string of comma-separated GUID strings extracted from the channel URIs. The domain attribute MUST be set to the server domain.
[bookmark: section_c582d59eab134b30abc65884bea42825][bookmark: _Toc79581202]Higher-Layer Triggered Events
None.
[bookmark: section_abfc0f517e814cf18f359d360260f2d9][bookmark: _Toc79581203]Message Processing Events And Sequencing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, the client MUST look for a ChannelInformationDataBlock inside the XccosReplyNoticeDataBlock. For each UserInformationDataBlock inside the ChannelInformationDataBlock, the client MUST inspect the id attribute, and the uri attribute. If a UserInfoMap is defined, the client SHOULD add an entry into the map with the id attribute as the key and the uri attribute as the value. For each ChannelInformationDataBlock present in the XccosReplyNoticeDataBlock, the client SHOULD inspect the ActiveInformationDataBlock within the ChannelInformationDataBlock. If an ActiveInformationDataBlock is present, the client takes the value of the value attribute. This value is a comma-separated string of the keys for the UserInfoMap. For each key in the comma-separated string, the client SHOULD retrieve the associated value from the UserInfoMap, and add an entry in the corresponding ParticipantList. After processing of the comma-separated key string, the resultant ParticipantList represents the current participants in this particular channel. For each ChannelInformationBlock, The client SHOULD also retrieve the value of the name attribute to be used as display name and the description attribute to be used as the description in the UI.
[bookmark: section_2cc54ea74a994edc8d3671d95b0e13e0][bookmark: _Toc79581204]Timer Events
None.
[bookmark: section_d624ae9f2d044596b13800058af1916a][bookmark: _Toc79581205]Other Local Events
None.
[bookmark: section_838a72e626ec4302917b7ea42a591654][bookmark: _Toc79581206]Retrieving Most Recent Chat History From A Channel
After joining a channel, the client SHOULD request the most recent chat history from the channel.
[bookmark: section_8757fdf86b4145f5ab3d3b904e7859bd][bookmark: _Toc79581207]Abstract Data Model
None.
[bookmark: section_6173fd7ba14f42048cfdd3cedd912c6f][bookmark: _Toc79581208]Timers
None.
[bookmark: section_4a1f9313e1974d25944716b1f272dbef][bookmark: _Toc79581209]Initialization
The client MUST construct the XccosCommandPrimitive with an id value of cmd:bccontext. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one ChannelInformationDataBlock. The uri attribute in the ChannelInformationDataBlock MUST be set to the value of the channel URI. The client MUST also set a BcQueryDataBlock inside the XccosCommandDataBlock. Within the BcQueryDataBlock, the client MUST set the last element with the cnt attribute. This cnt attribute specifies the number of messages the client requests to retrieve. If the user wants to actively participate in the channel, that is if the user opens a conversation window in the UI, the client SHOULD set the cnt value to 25. If the user is not actively participating in the channel, the client SHOULD set the cnt value to 1.
[bookmark: section_9fe904e3ee4b480e8fb3629934f2ffa3][bookmark: _Toc79581210]Higher-Layer Triggered Events
Retrieving most recent chat history from a channel is triggered by either the user joining a channel, or if the user opens a UI element (such as the conversation window) to actively participate in the channel.
[bookmark: section_16b6c48b7a6648689af169c0712cbacd][bookmark: _Toc79581211]Message Processing And Sequencing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, the client MUST look for a ChannelInformationDataBlock inside the XccosReplyNoticeDataBlock. If the uri attribute in the ChannelInformationDataBlock does not match the URI from ChannelInformationDataBlock in the original command, the results are dropped. For each GroupChatDataBlock inside the ChannelInformationDataBlock, the client MAY inspect the author, authdisp, and ts attributes, and the chat content inside the chat element or the rtf element of the GroupChatDataBlock. If the user is actively participating in the channel, these message data is displayed to the user. The client SHOULD inspect the chatId attribute for each GroupChatDataBlock. If the received chatId is greater than the LastReceivedMessageId of channel, the LastReceivedMessageId is updated with the chatId of this GroupChatDataBlock.
[bookmark: section_00c086f7622a4e2897cdc52af7a7aa0a][bookmark: _Toc79581212]Timer Events
None.
[bookmark: section_1dbaefcbe24c4f4abb0c9ce928a76507][bookmark: _Toc79581213]Other Local Events
None.
[bookmark: section_544bab9dab0b459a89f1d2d7a307dde7][bookmark: _Toc79581214]Searching Chat History
XCCOS provides the capability to search chat history. This section describes the client behavior for searching a specific channel. If the user searches multiple channels, the client MUST repeat the same operation for each channel.
[bookmark: section_df0bc4f3a91143c4ab19cd167d4f03a3][bookmark: _Toc79581215]Abstract Data Model
None.
[bookmark: section_fd35bb345a084aaa8d016a6e3533d63d][bookmark: _Toc79581216]Timers
None.
[bookmark: section_e49d0567332742ecb649e7605716dcb3][bookmark: _Toc79581217]Initialization
The client MUST construct the XccosCommandPrimitive with an id value of cmd:bcbydate. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one BcSearchDataBlock. The client MUST set the cmp attribute with the value "OR" if the user wants to get results if any of the search criteria matched, or set the cmp attribute with the value "AND" if the user wants to get results only if all of the search criteria matched. Within the BcSearchDataBlock, the client MUST set the limit element with the cnt attribute specifying the maximum number of hits to be returned. For each word the user wants to search, the client MUST set a text element with the mt attribute equal to "PP". The client MUST NOT set the msgid element. If the user specifies authors the user wants to search for, for each author specified, the client MUST set a UserInformationDataBlock with only the uri attribute. The uri attribute of the UserInformationDataBlock MUST be set to the value of the SIP URI of the specified author. The client MUST set a date element in the BcSearchDataBlock. If a date range is specified by the user, the from and to attributes in the date element MUST be set to the representation of the start and end of the date range respectively, as specified in [ISO-8601]. If the user did not specify a date range, the client MUST set the from attribute with the value of "1899-12-30T00:00:00.000Z", and the to attribute with the value of the current time. The matchcase, searchbkwds, and sortbkwds elements MUST be set to false. If the user specifies a channel to search from, the client MUST set a ChannelInformationDataBlock. The uri attribute in the ChannelInformationDataBlock MUST be set to the value of the channel URI.
[bookmark: section_462536705367405cbd2e5919d0282914][bookmark: _Toc79581218]Higher-Layer Triggered Events
Chat history search is initiated by user action. Search parameters are taken from user input.
[bookmark: section_efaf926c90f14f81a05cf793ac9c33fb][bookmark: _Toc79581219]Message Processing And Sequencing Events
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, the client MUST look for a ChannelInformationDataBlock inside the XccosReplyNoticeDataBlock. If the uri attribute in the ChannelInformationDataBlock does not match the URI from ChannelInformationDataBlock in the original command, the results are dropped. For each GroupChatDataBlock inside the ChannelInformationDataBlock, the client MAY inspect the author, authdisp, and ts attributes, and the chat content inside the chat element or the rtf element of the GroupChatDataBlock. This message data is then displayed to the user.
[bookmark: section_c93864ded1e34c34a0f81511e26205e7][bookmark: _Toc79581220]Timer Events
None.
[bookmark: section_03b593f86e2841bdb4868885c25cde3d][bookmark: _Toc79581221]Other Local Events
None.
[bookmark: section_ce970ab040554b9ba751a1e2ad869488][bookmark: _Toc79581222]Searching For Channels
Channel search is one of the ways the user can discover the channels to participate in. This section describes the client behavior for channel search.
[bookmark: section_9b531e80dcf44f8dae343760d496fef4][bookmark: _Toc79581223]Abstract Data Model
None.
[bookmark: section_0b9fabdf7f2749a7ac408ba18e85118a][bookmark: _Toc79581224]Timers
None.
[bookmark: section_49bdb9ed793e4a9b9128e9c9af14f0d4][bookmark: _Toc79581225]Initialization
The client MUST construct the XccosCommandPrimitive with an id value of cmd:chansrch. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one QueryInformationDataBlock. In the QueryInformationDataBlock, the client MUST set the qtype as "BYNAME". The client MUST set the keywords as empty. The client SHOULD set the value for the criteria attribute as the search input string from the user. If the user wants to search for channel name as well as for description, the extended attribute SHOULD be set to true; otherwise, if the user wants to search only for the channel name, the extended attribute SHOULD be set to false.
[bookmark: section_bf4bdacd8d1e41be9930914bc1a66179][bookmark: _Toc79581226]Higher-Layer Triggered Events
Channel search is initiated by the user. Search parameters are taken from user input.
[bookmark: section_e4a42653b2d9468281ae117ba2796e29][bookmark: _Toc79581227]Message Processing And Sequencing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, for each ChannelInformationDataBlock inside the XccosReplyPrimitive, the client SHOULD inspect the name, description, and uri attributes. The results are then displayed to the user.
[bookmark: section_21a1390a63394f39a56ca24174f4a235][bookmark: _Toc79581228]Timer Events
None.
[bookmark: section_8d1e3575a84d485c8056a292681333f3][bookmark: _Toc79581229]Other Local Events
None.
[bookmark: section_6010a7e71b1b4a72ac3b7e1d6213927b][bookmark: _Toc79581230]Retrieving Invitations
Another way of discovering channels to participate in is retrieving channel invitations. Channel invitations are generated when the channel owner/manager, through an out-of-band mechanism, sets the user as a member of a channel where invitation is enabled. This section describes how a client retrieves the channel invitations. The client SHOULD retrieve the invitation on behalf of the user after it connects to the channel server.
[bookmark: section_4c62e16c9cbd4b45b9eae2cd81b92f56][bookmark: _Toc79581231]Abstract Data Model
None.
[bookmark: section_452b9ec65cb6445b93e0fa9c6731a51d][bookmark: _Toc79581232]Timers
None.
[bookmark: section_0d1571caa71a4a2381a699c459a4f025][bookmark: _Toc79581233]Initialization
The client MUST construct the XccosCommandPrimitive with an id value of cmd:getinv. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one InviteDataBlock. In the InviteDataBlock, the client MUST set the inviteid attribute to "0". The client MUST set the domain attribute as server domain.
[bookmark: section_364d0e81616c4aaab3065c0817d20906][bookmark: _Toc79581234]Higher-Level Triggered Events
Retrieving invitations SHOULD be triggered after connection to the channel server succeeds.
[bookmark: section_092d994dc3f5407b870e50edfa1322b9][bookmark: _Toc79581235]Message Processing And Sequencing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, for each ChannelInformationDataBlock inside the XccosReplyPrimitive, the client SHOULD inspect the name, description, and uri attributes. Furthermore, the client SHOULD inspect the HashInformationDataBlock inside the XccosReplyPrimitive. The key attribute of that block will be set to the "inviteIds" string. The value attribute will be set to a comma-separated list of invitation id-timestamp pairs formatted as
<id>@<timestamp>,
where <id> is a numerical invitation identifier and <timestamp> is the Coordinated Universal Time, that is, UTC date/time when the invitation was issued by the server. For example:
<hash key="inviteIds" value="5@2012-04-23T23:12:39.29Z, 12@2012-04-24T23:55:45.793Z" />
The client SHOULD match invitation timestamps with corresponding channels using the fact that the invitation timestamps list is ordered exactly as the list of ChannelInformationDataBlocks. The results are then displayed to the user.
[bookmark: section_d5d417bc703b4909805b5ad1f7cdb3f8][bookmark: _Toc79581236]Timer Events
None.
[bookmark: section_fc8ce55fc3d2402ab63fa2042a78c778][bookmark: _Toc79581237]Other Local Events
None.
[bookmark: section_8fecde95b2d447b7a8cb6102ea36c348][bookmark: _Toc79581238]Retrieving Associated Channels
Another way of discovering channels is to ask the server for any channels associated with the user. This section describes the client behavior for retrieving associated channels.
[bookmark: section_aca4cb5db912402d8afb21de7b6102c3][bookmark: _Toc79581239]Abstract Data Model
None.
[bookmark: section_f720a858a4cb4020946b5c592c34367a][bookmark: _Toc79581240]Timers
None.
[bookmark: section_9646d7f63be9496fb0588c12a0a8efa6][bookmark: _Toc79581241]Initialization
The client SHOULD construct two XccosCommandPrimitives for retrieving channels the user is a member of, and user is a manager of, respectively.
For retrieving each set of associated channels, the client MUST construct an XccosCommandPrimitive with an id value of cmd:getassociations. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one AssociationDataBlock. In the AssociationDataBlock, the client MUST set the domain attribute as server domain. The client MUST set the type attribute as "MEMBER" if it wants to retrieve channels the user is a member of, or as "MANAGER" if it wants to retrieve channels the user is a manager of. The client MUST set the maxResult attribute to request the number of results to be retrieved.
[bookmark: section_00286a5ac6024cdebe1e9e86dad75a87][bookmark: _Toc79581242]Higher-Layer Triggered Events
Retrieving associated channels SHOULD be triggered after connection to the channel server succeeds.
[bookmark: section_bf647838276a4bd7add292e28122ddfb][bookmark: _Toc79581243]Message Processing And Sequencing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, for each ChannelInformationDataBlock inside the XccosReplyPrimitive, the client SHOULD inspect the name, description, and uri attributes. The results are then displayed to the user.
[bookmark: section_2ee9067f7d104d338072e8150224c2cb][bookmark: _Toc79581244]Timer Events
None.
[bookmark: section_3d4bee0bfc3e4c92b51a73631333e8ba][bookmark: _Toc79581245]Other Local Events
None.
[bookmark: section_3431c3078fa2483c92d9eb2da6b7bf3f][bookmark: _Toc79581246]Retrieving Channel Details
Xccos provides the functionality to retrieve additional details about a channel given a channel URI.
The client uses this functionality to determine which channel server the channel belongs to. When the client receives the channel URI by an out-of-band mechanism (such as email) it needs to find which channel server this channel belongs to. The client sends a command to all connected channel servers asking to retrieve additional details about a channel. The channel server returning a successful response would be the server that the channel belongs to.
This section describes the mechanism for retrieving channel details.
[bookmark: section_c118a056c0e44f20ba96b647477974a3][bookmark: _Toc79581247]Abstract Data Model
None.
[bookmark: section_f1e0c189b2c04f4ca6b0e26552d93afd][bookmark: _Toc79581248]Timers
None.
[bookmark: section_5ee7dfe96ab84187b4593530def67122][bookmark: _Toc79581249]Initialization
The client MUST construct a XccosCommandPrimitive with an id value of cmd:chaneffquery. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one ChannelInformationDataBlock. In the ChannelInformationDataBlock, the client MUST set the uri attribute with the channel URI.
[bookmark: section_abbac46df21546b9b7c62b29ece73c6b][bookmark: _Toc79581250]Higher-Layer Triggered Events
None.
[bookmark: section_5f2ca521cb4e4a03815af56ce692bb65][bookmark: _Toc79581251]Message Sequencing And Processing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, it indicates the channel belongs to this particular channel server. The client does not perform any additional processing on the data returned from the response.
[bookmark: section_4da4654835174ab790e4edf0d8e012b5][bookmark: _Toc79581252]Timer Events
None.
[bookmark: section_94122644dd844456a1ae8404f75c77a2][bookmark: _Toc79581253]Other Local Events
None.
[bookmark: section_75a455222c754fd281794dfacee712bf][bookmark: _Toc79581254]Sending A Chat Message
The GroupChatDataBlock is used to deposit content at the server for a specific channel, and the client expects the GroupChatDataBlock to be propagated to all endpoints connected to the particular channel.
[bookmark: section_bfefa56cd8eb4dffb3965cdd428a63e1][bookmark: _Toc79581255]Abstract Data Model
A data structure called MsgId is used to uniquely identify a command and its corresponding reply. It consists of 2 fields:
EnvId (64bit unsigned integer);
SeqId (64bit unsigned integer).
[bookmark: section_01d59072880640b5800d8f1708f3ea88][bookmark: _Toc79581256]Timers
The client defines a GroupChatSendTimer to track the completion of the GroupChatDataBlock it sends. The timer is started when the GroupChatDataBlock is sent. It has a value of 10 seconds.
[bookmark: section_0b862e61c49a4fb6a7c3a10280f053a9][bookmark: _Toc79581257]Initialization
When the client sends a command, it MUST construct a MsgId and set the EnvId with the value of envid in the parent XccosControlPrimitive. It MUST also assign a value in the seqid for the GroupChatDataBlock. The corresponding CmdId MUST take the same value in the SeqId.
[bookmark: section_8d519939b6d44d9896ce3a21b818f0df][bookmark: _Toc79581258]Higher-Layer Triggered Events
The user can initiate cancelation of the GroupChatDataBlock. In such event, the GroupChatSendTimer is cancelled.
[bookmark: section_f74fbedb92fa4a95b6168e6ecb137b88][bookmark: _Toc79581259]Message Processing Events and Sequencing Rules
When the client sends a GroupChatDataBlock, the chat element MUST be present. The client MAY send an optional rtf element.
[bookmark: section_ad92a1d6df72476a9c6bf03c1b113076][bookmark: _Toc79581260]Timer Events
If the GroupChatSendTimer is fired, the corresponding GroupChatDataBlock is deemed to have failed. The client SHOULD display an error condition in the UI indication the failure occurred.
[bookmark: section_99b86b079cb4453ea00b380758b57835][bookmark: _Toc79581261]Other Local Events
Processing of received GroupChatDataBlock (section 3.1.14) can trigger a SentGroupChatReceived event. When this event is triggered, the GroupChatSendTimer is cancelled.
[bookmark: section_b5b19050019b478c8406900eb1fe0708][bookmark: _Toc79581262]Receiving A Chat Message
An incoming chat message is represented by the GroupChatDataBlock.
[bookmark: section_ece96d0bfff24e83a243b538a290534a][bookmark: _Toc79581263]Abstract Data Model
The client uses the same MsgId data structure when processing incoming GroupChatDataBlock.
[bookmark: section_d7f8d485c6c24bccae3b6cbe8464b15f][bookmark: _Toc79581264]Timers
None.
[bookmark: section_38b6eae7102a4967a875a2dd49ad7262][bookmark: _Toc79581265]Initialization
None.
[bookmark: section_4404f275d4f444f3be16f6ea2d054737][bookmark: _Toc79581266]Higher-Layer Triggered Events
None.
[bookmark: section_7bbbfc338e8c4425b6ae5ea4d80410b7][bookmark: _Toc79581267]Message Processing Events and Sequencing Rules
When the client receives an XccosControlPrimitive containing GroupChatDataBlock, for each GroupChatDataBlock, it MUST perform the following matching algorithm:
1. Inspect the originatingMessageId element of type XccosMessageIdentifier. If none is present, there is no match for any pending GroupChatDataBlock sent.
2. Retrieve the value of seqid from originatingMessageId. If none is present, there is no match for any pending GroupChatDataBlock sent.
3. Retrieve the value of envid from originatingMessageId. If none is present, there is no match for any pending GroupChatDataBlock sent.
4. Find pending GroupChatDataBlock with MsgId having EnvId equal to the envid retrieved from originatingMessageId, and SeqId equal to the seqid retrieved from originatingMessageId. If a match is found, raise a SentGroupChatReceived event on the matched GroupChatDataBlock.
Whether or not there is a match to a pending GroupChatDataBlock, the client MAY inspect the author, authdisp, and ts attributes of the GroupChatDataBlock and display them to the user. For each GroupChatDataBlock, the client SHOULD also inspect the chatId attribute. If the received chatId is greater than the LastReceivedMessageId of the channel, the LastReceivedMessageId is updated with the chatId of this GroupChatDataBlock.
[bookmark: section_0beb058416b1415395ae3b7f77874ca5][bookmark: _Toc79581268]Timer Events
None.
[bookmark: section_fd93eef029204bbeb826966c0d7b3b4f][bookmark: _Toc79581269]Other Local Events
None.
[bookmark: section_ac40c831c38c470795bf6ab7fc66c483][bookmark: _Toc79581270]Receiving XccosNoticePrimitives
XccosNoticePrimitive is used by the server to notify the client of changes in the system, or to a specific channel. This section describes how the client handles receiving of XccosNoticePrimitives.
[bookmark: section_b5b8de9f31ed42979969b16106008fe0][bookmark: _Toc79581271]Abstract Data Model
None.
[bookmark: section_06afc8cf2c5742cb9fe870225a5abcb1][bookmark: _Toc79581272]Timers
None.
[bookmark: section_53823a33dbec42db986d85e14116b9ba][bookmark: _Toc79581273]Initialization
None.
[bookmark: section_337de42f1ecd4f50b313d5301df398ac][bookmark: _Toc79581274]Higher-Layer Triggered Events
None.
[bookmark: section_2d87bf4500284e2a9f355dc3df2661c4][bookmark: _Toc79581275]Message Processing And Sequencing Rules
When the client receives an XccosControlPrimitive with XccosNoticePrimitives, for each XccosNoticePrimitive, the client MUST perform the following operations:
The client SHOULD inspect the id attribute of the XccosNoticePrimitive. The client supports the following id values:
· ntc:invite
· This is used by the server to notify the client of new invitations.
· ntc:join
· This is used by the server to notify the client of a new participant in a particular channel.
· ntc:bjoin
· Similar to ntc:join, this is used by the server to notify the client of a new participant to multiple channels.
· ntc:part
· This is used by the server to notify the client a participant left a channel.
· ntc:kick
· This is used by the server to notify the client a participant is forcibly removed from a channel.
· ntc:quit
· This is used by the server to notify the client a participant has left all channels.
· ntc:chatmodify
· This is used by the server to notify the client that the chat history of a channel has been modified.
· ntc:chanmodify
· This is used by the server to notify the client that channel properties have been modified.
If the id value from the XccosNoticePrimitive is not any of the supported values, the XccosNoticePrimitive is dropped.
If the id value is ntc:invite, the client SHOULD inspect all ChannelInformationDataBlocks in the XccosReplyNoticeDataBlock. For each ChannelInformationDataBlock, the client SHOULD inspect the name, description, and uri attributes. The results are then displayed to the user.
If the id value is ntc:join, the client SHOULD inspect all UserInformationDataBlocks in the XccosReplyNoticeDataBlock. For each UserInformationDataBlock, the client SHOULD inspect the uri of the UserInformationDataBlock. If the uri is not present, this particular UserInformationDataBlock is dropped. The client SHOULD also inspect the value attribute inside the ActiveInformationDataBlock. If the value attribute is not present, this particular UserInformationDataBlock is dropped. Once the value is retrieved, the client SHOULD match the value with the GUID string portion of the channel URI for any channel the client is currently joined to. If no match is found, this particular UserInformationDataBlock is dropped. If a match is found, the client SHOULD add the URI retrieved from the UserInformationDataBlock into the channel’s ParticipantList (defined in section 3.1.1) and consider the user presented by the URI as an active participant in the channel.
If the id value is ntc:bjoin, the handling is very similar to ntc:join. The client SHOULD inspect all UserInformationDataBlocks in the XccosReplyNoticeDataBlock. For each UserInformationDataBlock, the client SHOULD inspect the uri of the UserInformationDataBlock. If the uri is not present, this particular UserInformationDataBlock is dropped. The client SHOULD also inspect the value attribute inside the ActiveInformationDataBlock. If the value attribute is not present, this particular UserInformationDataBlock is dropped. The value is a comma-separated list of GUID strings. For each GUID string from the value attribute, the client SHOULD match the value with the GUID string portion of the channel URI for any channel the client is currently joined to. If no match is found, this particular UserInformationDataBlock is dropped. If a match is found, the client SHOULD add the URI retrieved from the UserInformationDataBlock into the channel’s ParticipantList (defined in section 3.1.1) and consider the user presented by the URI as an active participant in the channel.
If the id value is ntc:part, the client SHOULD inspect all ChannelInformationDataBlocks in the XccosReplyNoticeDataBlock. For each ChannelInformationDataBlock, the client SHOULD inspect the uri of the ChannelInformationDataBlock. If the uri is not present, this particular ChannelInformationDataBlock is dropped. The client SHOULD look for a channel with a matching channel URI with any channel the client is currently joined to. If there is no match, this particular ChannelInformationDataBlock is dropped. The client SHOULD also inspect all UserInformationDataBlocks inside the ChannelInformationDataBlock. For each UserInformationDataBlock, the client SHOULD inspect the uri attribute. If the uri attribute is not present, this particular UserInformationDataBlock is dropped. Once the uri value is retrieved, the client SHOULD remove the URI from the channel’s ParticipantList (defined in section 3.1.1) and consider that the user presented by the URI has left the channel.
If the id value is ntc:kick, the client SHOULD inspect all ChannelInformationDataBlocks in the XccosReplyNoticeDataBlock. For each ChannelInformationDataBlock, the client SHOULD inspect the uri of the ChannelInformationDataBlock. If the uri is not present, this particular ChannelInformationDataBlock is dropped. The client SHOULD look for a channel with a matching channel URI with any channel the client is currently joined to. If there is no match, this particular ChannelInformationDataBlock is dropped. The client SHOULD also inspect all UserInformationDataBlocks inside the ChannelInformationDataBlock. For each UserInformationDataBlock, the client SHOULD inspect the uri attribute. If the uri attribute is not present, this particular UserInformationDataBlock is dropped. Once a uri value is retrieved, the client SHOULD remove the URI from the channel’s ParticipantList (defined in section 3.1.1) and consider that the user presented by the URI has left the channel. If the URI is the URI of the current user, the client is considered to have been forcibly removed from the channel. The client SHOULD clear the ParticipantList of this particular channel. If the user wishes to participate in this channel, the client MUST join the channel again using the logic described in section 3.1.5.
If the id value is ntc:quit, the client SHOULD inspect all ChannelInformationDataBlocks in the XccosReplyNoticeDataBlock. If there is no ChannelInformationDataBlock retrieved, the client MUST remove the uri retrieved from UserInformationDataBlock in the XccosReplyNoticeDataBlock from all the ParticipantLists the client is currently joined to. For each ChannelInformationDataBlock, the client SHOULD inspect the uri of the ChannelInformationDataBlock. If the uri is not present, this particular ChannelInformationDataBlock is dropped. The client SHOULD look for a channel with a matching channel URI with any channel the client is currently joined to. If there is no match, this particular ChannelInformationDataBlock is dropped. For each channel the ChannelInformationDataBlock specified, the client MUST remove the uri retrieved from UserInformationDataBlock in the XccosReplyNoticeDataBlock from its ParticipantLists.
If the id value is ntc:chatmodify, the client SHOULD inspect all ChannelInformationDataBlocks in the XccosReplyNoticeDataBlock. For each ChannelInformationDataBlock, the client SHOULD inspect the uri of the ChannelInformationDataBlock. If the uri is not present, this particular ChannelInformationDataBlock is dropped. The client SHOULD look for a channel with a matching channel URI with any channel the client is currently joined to. If there is no match, this particular ChannelInformationDataBlock is dropped. The client SHOULD request the most recent chat history for the channel (section 3.1.7).
If the id value is ntc:chanmodify, the client SHOULD inspect all ChannelInformationDataBlocks in the XccosReplyNoticeDataBlock. For each ChannelInformationDataBlock, the client SHOULD inspect the uri attribute of the ChannelInformationDataBlock. If the uri is not present, this particular ChannelInformationDataBlock is dropped. The client SHOULD look for a channel with a matching channel URI with any channel the client is currently joined to. If there is no match, this particular ChannelInformationDataBlock is dropped. The client SHOULD retrieve channel properties from the ChannelInformationDataBlock and update those changed channel properties that are used by the client
[bookmark: section_f943e34e4c154167b40016960093e36c][bookmark: _Toc79581276]Other Local Events
None.
[bookmark: section_baee71c1275d44ad82e90ce4c6da62fa][bookmark: _Toc79581277]Timer Events
None.
[bookmark: section_d8aa399361e8473999c1a8c158e344a7][bookmark: _Toc79581278]Retrieving Channel Permissions
XCCOS provides the functionality to retrieve the permissions that a user has on a particular channel given the channel URI.
This section describes the mechanism for retrieving channel details.
[bookmark: section_623ba0f94c18425fb4bff9001eb35908][bookmark: _Toc79581279]Abstract Data Model
None.
[bookmark: section_2bea12ecbd8d4835b4096c171e036550][bookmark: _Toc79581280]Timers
None.
[bookmark: section_77028780d91b4018848ff7480cefd0de][bookmark: _Toc79581281]Initialization
The client MUST construct a XccosCommandPrimitive with an id value of cmd:getroomperms. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccCommandDataBlock, the client MUST set exactly one ChannelInformationDataBlock. In the ChannelInformationDataBlock, the client MUST set the uri attribute with the channel URI.
[bookmark: section_af136d5eb03b4a668befcd22497bfe54][bookmark: _Toc79581282]Higher-Layer Triggered Events
None.
[bookmark: section_f94bd6dc22cd4143bcd0339048a16d62][bookmark: _Toc79581283]Message Processing Events and Sequencing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, the client MUST look for a ChannelInformationDataBlock. If the ChannelInformationDataBlock is present, the client MUST look for a UserInformationBlock within the ChannelInformationDataBlock. If the UserInformationBlock is present, the client MUST inspect the chperms attribute of the UserInformationDataBlock to determine the user’s permissions on the channel.
[bookmark: section_cc225645738a4929b2187e3c7c3bdc9f][bookmark: _Toc79581284]Timer Events
None.
[bookmark: section_b092034155f245d89cc9c8b73ebbfd50][bookmark: _Toc79581285]Other Local Events
None.
[bookmark: section_79f3094901624cc380b15211ca3401d2][bookmark: _Toc79581286]Modifying a Channel
XCCOS provides the functionality to modify the attributes and settings of a channel.
[bookmark: section_b4cfa4c58e0040139a25b78ee7c423ba][bookmark: _Toc79581287]Abstract Data Model
None.
[bookmark: section_9b236f2f38c0486b8fdf32919798a298][bookmark: _Toc79581288]Timers
None.
[bookmark: section_990482ace838401f8562c82ed4fda624][bookmark: _Toc79581289]Initialization
The client MUST construct a XccosCommandPrimitive with an id value of cmd:updatenode. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one ChannelInformationDataBlock. In the ChannelInformationDataBlock, the client MUST set the uri attribute, the name attribute, the parent attribute, the description attribute, the behavior attribute, the siopid attribute, and the disabled attribute. Only these attributes are supported. The client MUST also set one AuditDataBlock within the ChannelInformationDataBlock. The AuditDataBlock MUST contain the current AuditDataBlock from the channel details in section 2.2.2.1.1. The client MUST also set the urn:parlano:ma:info:visibility Info element and the urn:parlano:ma:prop:invite element. The client MAY optionally define the member, manager, or presenter RoleList elements to modify the corresponding access control list (ACL)s.
[bookmark: section_395e3003ebcc4dff80b449a14dc677bb][bookmark: _Toc79581290]Higher-Layer Triggered Events
None.
[bookmark: section_9f5e8f071f2443b491bebe76014c1361][bookmark: _Toc79581291]Message Processing Events and Sequencing Rules
If the client receives a failure reply as described in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, the client MUST look for a ChannelInformationDataBlock. If the ChannelInformationDataBlock is present, all attributes, elements, and RoleList elements for the modified channel are present.
[bookmark: section_0fa27dd1cc714edeaca44e4b8a0d387d][bookmark: _Toc79581292]Timer Events
None.
[bookmark: section_aa35e8898f2d4f2ea5e299003891b62a][bookmark: _Toc79581293]Other Local Events
None.
[bookmark: section_3389d29702834884af4fb42de0c72a4c][bookmark: _Toc79581294]Retrieving Legacy User Preferences
Legacy implementations of XCCOS-based persistent messaging systems stored user preferences on an XCCOS server. Messaging systems built on the version of the XCCOS protocol documented in this specification store user preferences using a different mechanism as described in ([MS-PRES]). This section describes the client functionality that enables migration of user preferences from legacy systems to the current architecture.
[bookmark: section_dedaeea194c34c6d936faa28c2efb15a][bookmark: _Toc79581295]Abstract Data Model
None.
[bookmark: section_67203382d0f24311b6e7633c5cc3d0e6][bookmark: _Toc79581296]Timers
None.
[bookmark: section_c4ba9325970f4ceb9d4b5dd7c02cf9bd][bookmark: _Toc79581297]Initialization
The client MUST construct the XccosCommandPrimitive with an id value of cmd:getpref. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one PreferenceDataBlock. The label attribute in the PreferenceDataBlock MUST be set to the value of "kedzie.GroupChannels" to retrieve the list of channels that the user is following. The seqid attribute MUST be set to "0" and the createdefault attribute MUST be present, but its value (true or false) is irrelevant.
[bookmark: section_0ee6129a17fd439ca6629199c5d41568][bookmark: _Toc79581298]Higher-Layer Triggered Events
None.
[bookmark: section_bafddb3a76a44ca3b543a0dfb3326169][bookmark: _Toc79581299]Message Processing Events and Sequencing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, the client MUST look for a PreferenceDataBlock inside the XccosReplyNoticeDataBlock. If the value of label attribute in the PreferenceDataBlock is not "kedzie.GroupChannels", the reply is discarded. Otherwise, the client SHOULD inspect the content attribute of the PreferenceDataBlock. The client SHOULD:
· decode the base64 encoded string value of the content attribute into a binary stream.
· unzip that binary stream into a string containing the XML document, formatted as specified in section 2.2.2.1.26.1.
· parse the XML document and extract per-channel user preferences.
· publish user preferences following the protocol as described in [MS-PRES].
[bookmark: section_6e60758cbe2049d1ade937d1fb18cade][bookmark: _Toc79581300]Timer Events
None.
[bookmark: section_0020930669054c1586b2b31c9a2b239c][bookmark: _Toc79581301]Other Local Events
None.
[bookmark: section_5437b6682bea45ecae7aeeff064e19ed][bookmark: _Toc79581302]Requesting File Transfer Token
XCCOS provides the ability to upload a file or download a file from the Group Chat File Repository Web Service. The file will be associated with a given channel.
[bookmark: section_d9990c1931ce4799b4b2deb9269f0484][bookmark: _Toc79581303]Abstract Data Model
None.
[bookmark: section_20aa098b7449411b9e513114b4132364][bookmark: _Toc79581304]Timers
None.
[bookmark: section_ac21f1c403274d3db2b21f7409e53f1d][bookmark: _Toc79581305]Initialization
To retrieve a file token that can be used to upload a file, the client MUST construct the XccosCommandPrimitive with an id value of cmd:getfutok. To retrieve a file token that can be used to download a file, the client MUST construct the XccosCommandPrimitive with an id value of cmd:getfutok. The client MUST send the command with exactly one XccosCommandDataBlock. Within the XccosCommandDataBlock, the client MUST set exactly one FileTokenDataBlock. The channelUri attribute in the FileTokenDataBlock MUST be set to the unique identifier of the channel with which the file will be associated. The fileUrl attribute MUST be set to a string representing the unique identifier for this file.
[bookmark: section_74807dd7dd724006b8f5f1878b3b2caf][bookmark: _Toc79581306]Higher-Layer Triggered Events
None.
[bookmark: section_356c9f8e0ffb4b54a8042d8da795fcfa][bookmark: _Toc79581307]Message Processing Events and Sequencing Rules
If the client receives a failure reply as specified in section 3.1.2.1.5, the client MUST NOT perform further processing on the XccosReplyPrimitive. If the client receives a success reply, the client MUST look for a TokenDataBlock inside the XccosReplyNoticeDataBlock. If the value of the token attribute in the TokenDataBlock is empty, the reply is discarded. Otherwise, the client MUST inspect the serveruri attribute of the TokenDataBlock. The client MUST:
· Store the token and serveruri values for later use when downloading the file.
· Make web service calls to the Group Chat File Repository Web Service using the given serveruri value.
The token is a unique value that will be passed as a parameter to all subsequent calls to the Group Chat File Repository Web Service that are related to this specific upload or download operation. The token can only be used for a small interval of time and can only be used for operations related to the given file in the given channel.
[bookmark: section_5c6c3665d2694246bd8ba6641a0f5c25][bookmark: _Toc79581308]Timer Events
None.
[bookmark: section_309a28d2c24f4f4d91afbb9d7ebdb856][bookmark: _Toc79581309]Other Local Events
None.
[bookmark: section_50c4ecabcec3417d9801529bbb02f543][bookmark: _Toc79581310]Server Details
This section describes protocol details specific to the server.
[bookmark: section_c127c0c81e3149d49eedf7150936f9ca][bookmark: _Toc79581311]Receiving XccosCommandPrimitive messages
XccosCommandPrimitive is used by the client to send requests to the server, any others than for chat messages. This section describes how the server handles receiving of XccosCommandPrimitives.
[bookmark: section_5dd141f3d3da424898150cf0fd406d0c][bookmark: _Toc79581312]Abstract Data Model
A data structure called CmdId is used to uniquely identify a command and its corresponding reply. It consists of 2 fields:
EnvId (64bit unsigned integer).
SeqId (64bit unsigned integer).
[bookmark: section_e0bd4bd33f424556bc9f050085f888a8][bookmark: _Toc79581313]Timers
A generic timer for timeout purposes related to server processing time exists. The default value is 25 seconds.
[bookmark: section_5bfe8a4c09bc4d76a35a748f6e00d812][bookmark: _Toc79581314]Initialization
None.
[bookmark: section_262c6efc605f40e1a01bc67d11917cc7][bookmark: _Toc79581315]Higher-Layer Triggered Event
None.
[bookmark: section_28d63820604345a8ae0b253afd539605][bookmark: _Toc79581316]Message Processing Events and Sequencing Rules
When the server receives an XccosCommandPrimitive, it first checks the XccosCommandPrimitive for schema compliance. If the XccosCommandPrimitive is not compliant to the schema, a reply of type XccosErrorPrimitive MUST be sent back. Its commandid MUST be set to the CmdId of the incoming message.
If the XccosCommandPrimitive is compliant to the schema, the id attribute MUST be checked against the list of supported/implemented commands. If not in the list, a reply of type XccosErrorPrimitive MUST be sent back. Its commandid MUST be set to the CmdId of the incoming message.
If the id is in the list, specific processing is done for the command, as described in the following sections.
As a result of processing, replies of type XccosReplyPrimitive or errors of type XccosErrorPrimitive MAY be sent back to the client. All these MUST be stamped with the CmdId of the associated incoming message in their commandid element.
[bookmark: section_5c5ee4f86e8f449fa4e19831eb3885ba][bookmark: _Toc79581317]Timer Events
A timeout event MUST trigger a SIP 503 reply to be sent for the pending INFO request that carried the command(s).
[bookmark: section_728a168d6645495e8b442a2fa44e1893][bookmark: _Toc79581318]Other Local Events
Additional server related global state (such as load) MAY be taken into account when deciding on processing vs. dropping incoming messages..
[bookmark: section_912a9db8dcb444209c8c47331bdc4692][bookmark: _Toc79581319]Retrieving Server Information
A client can issue an XCCOS command to retrieve server information.
[bookmark: section_23c76ae06dfb4895bb19c1182081f365][bookmark: _Toc79581320]Abstract Data Model
None.
[bookmark: section_efa26e5100ef466a9c38132e7fbf93a0][bookmark: _Toc79581321]Timers
None.
[bookmark: section_712f63a62b0d4b7889a66ad2f0ddb19a][bookmark: _Toc79581322]Initialization
The id of the XccosCommandPrimitive is cmd:getserverinfo.
[bookmark: section_7e2f8a9b65054142a3118f5d382e4d32][bookmark: _Toc79581323]Higher-Layer Triggered Event
None.
[bookmark: section_2c04cced079548a7bae37811271b2a4a][bookmark: _Toc79581324]Message Processing Events and Sequencing Rules
Server MUST reply with an XccosReplyPrimitive with id rpl:getserverinfo.
The containing ServerInformationDataBlock MUST be set based on the infoType field from the incoming ServerInformationDataBlock, as specified in section 2.2.2.1.10.
[bookmark: section_7e355ceed13f410d9593c41024ffc9c9][bookmark: _Toc79581325]Timer Events
None.
[bookmark: section_307c1bb2abe548f9af6fdd676725df01][bookmark: _Toc79581326]Other Local Events
None.
[bookmark: section_487bcaefd704425d9a9f230f31bb8618][bookmark: _Toc79581327]Joining Multiple Channels
This describes a mechanism for fast joining (compared with joining chat rooms separately) of multiple chat rooms.
[bookmark: section_982574b0005344dbb772a20432c3c62f][bookmark: _Toc79581328]Abstract Data Model
This section describes a conceptual model of possible data organization that an implementation maintains to participate in this protocol. The described organization is provided to facilitate the explanation of how the protocol behaves. This document does not mandate that implementations adhere to this model as long as their external behavior is consistent with that described in this document.
Server MUST maintain a database of chat rooms.
Server MUST maintain a database of users.
Server MUST maintain lists of connected endpoints for each user.
Server MUST maintain state for each <endpoint, chat room> pair:
· Not Joined: Endpoint is not participating in the chat room.
· Joined: Endpoint is participating in the chat room.
A computed/derived state that corresponds to the user to chat room pair is defined as:
· Not Joined: All <Endpoint, Chat Room> tuples are Not Joined.
· Joined: At least one <Endpoint, Chat Room> tuple is Joined.
A database of roles (tuples of <user, chat room, role type>) MUST be maintained by the server.
Server MUST maintain a database of chats (backchat) for each chat room.
[bookmark: section_247e56f9948d4bc3a920ab161a9d26c9][bookmark: _Toc79581329]Timers
None.
[bookmark: section_101daabf0796496f8bc3e8c0bb4dbdfd][bookmark: _Toc79581330]Initialization
The id of the XccosCommandPrimitive is cmd:bjoin as specified in section 2.2.2.2.2.
[bookmark: section_deb4224bc1d248409a585f9442b6c976][bookmark: _Toc79581331]Higher-Layer Triggered Event
None.
[bookmark: section_32d691bbac0243aca388707ff79fc158][bookmark: _Toc79581332]Message Processing events and Sequencing Rules
1. The server MUST check that the XccosCommandPrimitive contains a data element as specified in section 2.2.2.2.2. If it is missing, the server MUST reply with an XccosErrorPrimitive message.
2. Then the server MUST check the presence of chanid elements as specified in section 2.2.2.1.28 and section 2.2.2.1.9.
3. These elements are a representation of a hash table that the server MUST re-construct as follows:
· The key attribute of a chanid element is a key in the hash table.
· The value attribute of a chanid element is tokenized with "," used as separator. Each resulting token is a value in the hash table.
4. The server interprets the resulting hash table as follows:
· The key is the number of backchat messages to be sent to the client.
· The value is the GUID of the chat room to be joined.
5. For each chat room to be joined:
· The server MUST check if the user is allowed to join based on role. If not allowed, the chat room joining is considered rejected.
· Otherwise the server MUST change the state of <endpoint, chat room> tuple to Joined.
6. The server MUST create an XccosReplyPrimitive with the id rpl:bjoin to send back to the client, as specified in section 2.2.2.2.4.
7. The server MUST set the data element as specified in section 2.2.2.1.29.
8. The server MUST create a list of unique users that are Joined to at least one of the chat rooms where joining succeeded. The list will be numbered with an id for the purpose of this processing.
9. The server MUST create a hash table (key=error code, value=chat room URI) for each chat room where join failed.
10. For each chat room where join succeeded:
11. The server MUST add a chanib element as specified in section 2.2.2.1.7.
· The server MUST add an aib element as specified in section 2.2.2.1.22 for each role type if at least one user of that role type is Joined to that chat room.
· The key attribute is the value of the role type, and the value attribute is a comma separated list obtained by concatenating the corresponding user indexes as generated in step 7.
12. The server MUST add uib elements for each item in the list created at step 7, as specified in section 2.2.2.1.4.
13. If at least one chat room join failed (at step 4), the server MUST add fib elements as specified in section 2.2.2.1.23.
14. For each chat room where join succeeded:
· The server MUST create an XccosReplyPrimitive with id rpl:bccontext as specified in section 2.2.2.2.4.
· The server MUST add a data element as specified in section 2.2.2.1.29.
· The server MUST add backchat msg elements as specified in section 2.2.2.2.9.
15. The server MUST send all assembled messages to the client.
[bookmark: section_2dd05a98f55e4aacb23bb16e67806388][bookmark: _Toc79581333]Timer Events
None.
[bookmark: section_a8c8052c7cd549718b02b036d583813d][bookmark: _Toc79581334]Other Local Events
None.
[bookmark: section_d3a6975cb6f4409785705b66cb4bb57c][bookmark: _Toc79581335]Joining Single Channel
This describes the joining of a single chat room.
[bookmark: section_3bc005882f9744eba5d3b7b0c3d9686e][bookmark: _Toc79581336]Abstract Data Model
This section is similar to section 3.2.3.1.
[bookmark: section_52edcb3df87c4f1c86eac22cb717fdcf][bookmark: _Toc79581337]Timers
None.
[bookmark: section_0788d6328b9a4a71a27e5e11db5e3579][bookmark: _Toc79581338]Initialization
The id of the XccosCommandPrimitive is cmd:join, as specified in section 2.2.2.2.2.
[bookmark: section_bf61e71229224255b989c4e55380ea5f][bookmark: _Toc79581339]Higher-Layer Triggered Event
None.
[bookmark: section_d183a719956a4a30ae36ca36616a30ae][bookmark: _Toc79581340]Message Processing Events and Sequencing Rules
1. The server MUST check that the XccosCommandPrimitive contains a data element as specified in section 2.2.2.2.2. If it is missing the server MUST reply with an XccosErrorPrimitive message.
2. Then the server MUST check the presence of chanid element as specified in section 2.2.2.1.28 and section 2.2.2.1.9.
The server MUST interpret the value attribute as the GUID of the chat room to join.
3. The server MUST check that the user is allowed to join based on role. If not allowed, the chat room joining is considered rejected and the server MUST send back an XccosErrorPrimitive message.
4. Otherwise the server MUST change the state of the <endpoint, chat room> tuple to Joined.
5. The server MUST create an XccosReplyPrimitive with the id rpl:join to send back to the client, as specified in section 2.2.2.2.4.
6. The server MUST set the data element as specified in section 2.2.2.1.29.
7. The server MUST create a list of users that are Joined to the chat room. The list will be numbered with an id for the purpose of this processing.
8. The server MUST add a chanid element as specified in section 2.2.2.1.7.
9. Server MUST add an aib element as specified in section 2.2.2.1.22 for each role type if at least one user of that role type is Joined to that chat room.
The key attribute is the value of the role type, and the value attribute is a comma separated list obtained buy concatenating the corresponding user indexes as generated in step 7.
10. The server MUST add uib elements for each item in the list created at step 7, as specified in section 2.2.2.1.4
11. The server MUST send the assembled message to the client.
[bookmark: section_3d965cc41ece422c85150ce8fa0fda2a][bookmark: _Toc79581341]Timer Events
None.
[bookmark: section_84555a14908145b78fa57b0d24abb556][bookmark: _Toc79581342]Other Local Events
None.
[bookmark: section_2c596bc99cd24f73ba3055b2c602d7a4][bookmark: _Toc79581343]Retrieving Most Recent Chat History From A Channel
This is used to retrieve the latest chat messages for a chat room.
[bookmark: section_919827a5b94e4ef98c110e57361caa73][bookmark: _Toc79581344]Abstract Data Model
This is similar to section 3.2.3.1
[bookmark: section_ff85e232ff60420a873dc2562266eb71][bookmark: _Toc79581345]Timers
None.
[bookmark: section_a76ae07485594880bc658c7fb350670e][bookmark: _Toc79581346]Initialization
The id of the XccosCommandPrimitive is cmd:bccontext, as specified in section 2.2.2.2.2.
[bookmark: section_eaaee076645349b8a47bca7dbcab2acf][bookmark: _Toc79581347]Higher-Layer Triggered Event
None.
[bookmark: section_947f92711fc8440cb0c95123a076c10b][bookmark: _Toc79581348]Message Processing Events and Sequencing Rules
1. The server MUST check that the XccosCommandPrimitive contains a data element as specified in section 2.2.2.2.2. If it is missing the server MUST reply with an XccosErrorPrimitive message.
2. Then the server MUST check the presence of chanib elements as specified in section 2.2.2.1.28 and section 2.2.2.1.7.
3. The server MUST check the presence of a bcq element as specified in section 2.2.2.1.28 and section 2.2.2.1.17.
4. The server MUST check the presence of a cnt attribute in the last element, as specified in section 2.2.2.1.17.1.
5. The server MUST search in the chat database associated to the room for the latest messages, not more than what the last attribute specified.
6. The server MUST create an XccosReplyPrimitive with id rpl:bccontext to send back to the client, as specified in section 2.2.2.2.4.
7. The server MUST set the data element as specified in section 2.2.2.1.29.
8. The server MUST add backchat msg elements as specified in section 2.2.2.2.9
9. The server MUST send the assembled message to the client.
[bookmark: section_7850f1d655a64e17b2f51a421de0156f][bookmark: _Toc79581349]Timer Events
None.
[bookmark: section_23659175892c4982af26b3a2e4341a3a][bookmark: _Toc79581350]Other Local Events
None.
[bookmark: section_96b2acc2fe28441c8141a8f6ead5716c][bookmark: _Toc79581351]Processing Chat Messages
This describes the receiving and then the fanning out of chat messages.
[bookmark: section_e6891c1959eb49e7b4ce6060b6a393a1][bookmark: _Toc79581352]Abstract Data Model
Similar to section 3.2.3.1.
In addition, the server MUST maintain a "last chat id" number for each chat room.
[bookmark: section_f3310cdb1e91433788a7e2e707e6e28c][bookmark: _Toc79581353]Timers
None.
[bookmark: section_288fb229f61844cb85ae7e15902eb223][bookmark: _Toc79581354]Initialization
The id of the GroupChatDataBlock element is grpcht, as specified in section 2.2.2.2.9.
[bookmark: section_4e71a4795bfb436b8a129f5ad5dab5fd][bookmark: _Toc79581355]Higher-Layer Triggered Event
None.
[bookmark: section_2b56085e997f4044a513f41443c7693d][bookmark: _Toc79581356]Message Processing Events and Sequencing Rules
1. The server MUST check that the GroupChatDataBlock contains the mandatory attributes as specified in section 2.2.2.2.9. If any is missing the server MUST reply with an XccosErrorPrimitive message.
2. The server MUST generate a new "last chat id" for the chat room identified in the message.
3. The server MUST set chatId to the new "last chat id".
4. The server MUST generate a chat timestamp and set it to ts.
5. The server SHOULD fill the authdisp field with a displayable name of the user identified by author, as specified in section 2.2.2.2.9.
6. The server MUST set the OriginatingMessageId as follows:
· The SeqId MUST be set to the value held by the similar field in GroupChatDataBlock.
· The EnvId MUST be set to the value held by the similar field in the embedding xccos document.
7. The server MAY decide to add the chat to the database of per chat room chats.
8. The server MUST send the updated message to all endpoints joined to the chat room.
[bookmark: section_73ddd896fc5b446ca27600f8adc611f6][bookmark: _Toc79581357]Timer Events
None.
[bookmark: section_22a72c53586a4fa198a98310a84a994e][bookmark: _Toc79581358]Other Local Events
None.
[bookmark: section_bb3cec8e1bf049a2a5beeaf0466791bd][bookmark: _Toc79581359]Retrieving Channel Permissions
This provides a mechanism for the signed-in user to determine permissions on a channel.
[bookmark: section_28aaa34ad36348649e15404f0336b273][bookmark: _Toc79581360]Abstract Data Model
This section is similar to section 3.2.3.1
[bookmark: section_61e09da473514a49a2031b58739490dd][bookmark: _Toc79581361]Timers
None.
[bookmark: section_8e7d277258c24e5599836682c5f3088e][bookmark: _Toc79581362]Initialization
The id of the XccosCommandPrimitive is cmd:getroomperms as specified in section 2.2.2.2.2
[bookmark: section_ea00a68bbb5b4d548b4e93b4537dbf05][bookmark: _Toc79581363]Higher-Layer Triggered Events
None.
[bookmark: section_b6cb91474e0c48cd913726f20c4944e8][bookmark: _Toc79581364]Message Processing Events and Sequencing Rules
1. The server MUST check that the XccosCommandPrimitive contains a data element as specified in section 2.2.2.2.2. If it is missing, the server MUST reply with an XccosErrorPrimitive message.
2. The server MUST check for the presence of a chanib element as specified in section 2.2.2.1.23 and section 2.2.2.1.7.
3. The server MUST check that the user is known by the server. If the user is unknown, the server MUST reply with an XccosErrorPrimitive message.
4. The server MUST check that the uri attribute value in the chanib is a valid channel URI. If the URI is not valid, the server MUST reply with an XccosErrorPrimitive message.
5. The server MUST check that the user has permission to know that the channel exists. If the user does not have the required permission, the server MUST reply with an XccosErrorPrimitive message.
6. The server MUST create an XccosReplyPrimitive with the id rpl:getroomperms to return to the client as specified in section 2.2.2.2.4.
7. The server MUST add a data element to the XccosReplyPrimitive.
8. The server MUST add a chanib element to the data element.
9. The server MUST add a uib element to the chanib element.
10. The server MUST add a chperms attribute to the uib element. The chperms value is the permission bitmap for the user and channel as specified in section 2.2.2.1.4.
11. The server MUST send the XccosReplyPrimitive to the client.
[bookmark: section_87537a1e489e4ee1881f5bc33856f05f][bookmark: _Toc79581365]Timer Events
None.
[bookmark: section_403ad0c50def4e5a90452f711cbe08c1][bookmark: _Toc79581366]Other Local Events
None.
[bookmark: section_9cc1becfd09e48ee9765fa97cf67e684][bookmark: _Toc79581367]Modifying a Channel
This describes a mechanism for modifying a channel.
[bookmark: section_18763cfc2e7f47099fe69392fbe5a243][bookmark: _Toc79581368]Abstract Data Model
This section is similar to section 3.2.3.1
[bookmark: section_e13acc7f22ed43658e793beaa4c64397][bookmark: _Toc79581369]Timers
None.
[bookmark: section_e388929402d441ed9b6ebf466dea1200][bookmark: _Toc79581370]Initialization
The id of the XccosCommandPrimitive is cmd:updatenode as specified in section 2.2.2.2.2
[bookmark: section_7331eba210d748e08940da69cb21090b][bookmark: _Toc79581371]Higher-Layer Triggered Events
None.
[bookmark: section_79757b5805b24f8abf8b89c391732885][bookmark: _Toc79581372]Message Processing Events and Sequencing Rules
1. The server MUST check that the XccosCommandPrimitive contains a data element as specified in section 2.2.2.2.2. If it is missing, the server MUST reply with an XccosErrorPrimitive message.
2. The server MUST check for the presence of a chanib element as specified in section 2.2.2.1.7.
3. The server MUST check that the user is known by the server. If the user is unknown, the server MUST reply with an XccosErrorPrimitive message.
4. The server MUST check that the uri attribute value in the chanib is a valid channel URI. If the URI is not valid, the server MUST reply with an XccosErrorPrimitive message.
5. The server MUST check that the user has permissions to modify the channel. If the user does not have permission, the server MUST reply with an XccosErrorPrimitive message.
6. The server MUST check that all required and optional attributes and elements of the chanib element are present and complete. If any are not valid, the server MUST reply with an XccosErrorPrimitive message.
7. The server MUST update the channel according to the data in the chanib element.
8. The server MUST create an XccosReplyPrimitive with the id rpl:updatenode to return to the client as specified in section 2.2.2.2.4.
9. The server MUST add a data element to the XccosReplyPrimitive.
10. The server MUST add a chanib element to the data element.
11. The server MUST add the resultant channel attributes and elements to the chanib element.
12. The server MUST return this XccosReplyPrimitive to the client.
[bookmark: section_17dba510d4304d7f879d5ced0ca85ac4][bookmark: _Toc79581373]Timer Events
None.
[bookmark: section_11d54cf99e944064bf79a7c027fe93e4][bookmark: _Toc79581374]Other Local Events
None.
[bookmark: section_76c2e6da92a642039b396eb146427ed4][bookmark: _Toc79581375]Protocol Examples
[bookmark: section_0f69d7fd363449a3aedf7ee29800a04c][bookmark: _Toc79581376]Retrieving Server Information
Client requests server information:
<xccos ver="1" envid="6698699123101735678" xmlns="urn:parlano:xml:ns:xccos">
 <cmd id="cmd:getserverinfo" seqid="1">
 <data>
 <sib domain="example.com" infoType="507" clientVersion="4.0.7577.253" />
 </data>
 </cmd>
</xccos>
Server returns requested information:
<xccos xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ver="1"
 envid="1472189363123229190"
 xmlns="urn:parlano:xml:ns:xccos">
 <rpl id="rpl:getserverinfo" seqid="1">
 <commandid seqid="1" envid="6698699123101735678" />
 <resp code="200">SUCCESS_OK</resp>
 <data>
 <sib infoType="251"
 serverTime="2011-10-27T21:05:48.4345771Z"
 searchLimit="999"
 messageSizeLimit="8000"
 storySizeLimit="16000"
 rootUri="ma-cat://example.com/cf724a9b-4595-4556-809d-b7846c4c4320"
 dbVersion="de64325e-d4ab-44d5-9ea8-55785b7c8a3b"
 serverVersion="5.0.7853.0" />
 </data>
 </rpl>
</xccos>
[bookmark: section_cf7e510d52224b2e977f62d5476cf066][bookmark: _Toc79581377]Batch joining
Client requests a batch joining:
<xccos ver="1" envid="6698699123101735680" xmlns="urn:parlano:xml:ns:xccos">
 <cmd id="cmd:bjoin" seqid="1">
 <data>
 <chanid key="100"
 value="93489432-b6be-4c67-932f-09e39a162072,
 6e43547f-9152-46e3-ad76-82197694fdb9"
 domain="example.com" />
 </data>
 </cmd>
</xccos>
Server sends the chat room information, user information and user to chat room mapping in a reply.
Additional "rpl:bccontext" messages are sent with backchat, usually in the same envelope:
<xccos xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ver="1"
 envid="1472189363123229193"
 xmlns="urn:parlano:xml:ns:xccos">
 <rpl id="rpl:bjoin" seqid="1">
 <commandid seqid="1" envid="6698699123101735680" />
 <resp code="200">SUCCESS_OK</resp>
 <data>
 <chanib name="Projects"
 description="Various public projects"
 parent="ma-cat://example.com/2642ebba-f56a-4891-9b92-3991eb865c92"
 uri="ma-chan://example.com/93489432-b6be-4c67-932f-09e39a162072"
 overridemembers="false" behavior="NORMAL" topic="" disabled="false">
 <aib key="3456" value="0,1,2" />
 <aib key="11652" value="1" />
 <audit updatedby="Jane Doe" updatedon="2011-10-24T21:11:22.3429958Z"
 createdby="Jane Doe" createdon="2011-10-24T21:11:22.1489764Z" />
 <info id="urn:parlano:ma:info:filestoreuri">
 https://webserver.example.com/mgcwebservice/mgcwebservice.asmx
 </info>
 <info id="urn:parlano:ma:info:ucnt">1</info>
 <info id="urn:parlano:ma:info:visibility">SCOPED</info>
 <prop id="urn:parlano:ma:prop:logged">True</prop>
 <prop id="urn:parlano:ma:prop:invite">True</prop>
 <prop id="urn:parlano:ma:prop:filepost">True</prop>
 </chanib>
 <chanib name="Top Secret"
 description="Top Secret stuff"
 parent="ma-cat://example.com/62d7af6b-236a-45bc-88d8-74dcedd4854f"
 uri="ma-chan://example.com/6e43547f-9152-46e3-ad76-82197694fdb9"
 overridemembers="false" behavior="NORMAL" topic="" disabled="false"
 siopname="Top Secret Portal"
 siopurl="http://topsecretportal.webserver.example.com"
 siopid="a01632c4-20ae-44a7-8ccf-24dc81cf3b32">
 <aib key="3456" value="0,2" />
 <audit updatedby="sysuser" updatedon="2011-10-04T21:37:55.1235192Z"
 createdby="sysuser" createdon="2011-10-02T22:08:07.7617317Z" />
 <info id="urn:parlano:ma:info:filestoreuri">
 https://webserver.example.com/mgcwebservice/mgcwebservice.asmx
 </info>
 <info id="urn:parlano:ma:info:ucnt">2</info>
 <info id="urn:parlano:ma:info:visibility">PRIVATE</info>
 <prop id="urn:parlano:ma:prop:logged">True</prop>
 <prop id="urn:parlano:ma:prop:invite">False</prop>
 <prop id="urn:parlano:ma:prop:filepost">True</prop>
 </chanib>
 <uib uri="sip:johnsm@example.com"
 guid="2106938B-BEA5-45D6-A74E-16A4BB2FC710" type="5"
 uname="John Smith" disabled="false" dispname="John Smith" id="0">
 <perms defined="1" inherited="1" inheriting="true" />
 </uib>
 <uib uri="sip:janedoe@example.com"
 guid="93109AFC-D91D-45A1-96F4-6DCBBB31B640" type="5"
 uname="Jane Doe" disabled="false" dispname="Jane Doe" id="1">
 <perms defined="1" inherited="1" inheriting="true" />
 </uib>
 <uib uri="sip:johndoe@example.com"
 guid="E5934BA3-B487-48A6-9D46-3436D6325B6D" type="5"
 uname="John Doe" disabled="false" dispname="John Doe" id="2">
 <perms defined="1" inherited="1" inheriting="true" />
 </uib>
 </data>
 </rpl>
 <rpl id="rpl:bccontext" seqid="2">
 <commandid seqid="1" envid="6698699123101735680" />
 <resp code="200">SUCCESS_OK</resp>
 <data>
 <chanib uri="ma-chan://example.com/93489432-b6be-4c67-932f-09e39a162072"
 overridemembers="false" behavior="UNSET" topic="" disabled="false">
 <msg id="grpchat"
 chanUri="ma-chan://example.com/93489432-b6be-4c67-932f-09e39a162072"
 author="sip:janedoe@example.com" authdisp="Jane Doe"
 alert="false" chatId="1" ts="2011-10-24T21:23:33.887Z">
 <chat>Test</chat>
 </msg>
 </chanib>
 <cnt value="1" over="false" />
 <status>1</status>
 </data>
 </rpl>

</xccos>
[bookmark: section_a7338a30f9394684a35054bd7a17e008][bookmark: _Toc79581378]Retrieve Most Recent Chat History
Client sends request for backchat context:
<xccos ver="1" envid="6698699123101735704" xmlns="urn:parlano:xml:ns:xccos">
 <cmd id="cmd:bccontext" seqid="1">
 <data>
 <chanib uri="ma-chan://example.com/2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 overridemembers="false" behavior="UNSET" disabled="false" />
 <bcq>
 <last cnt="100" />
 </bcq>
 </data>
 </cmd>
</xccos>
Server returns the backchat:
<xccos xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ver="1"
 envid="1472189363123229193"
 xmlns="urn:parlano:xml:ns:xccos">
 <rpl id="rpl:bccontext" seqid="1">
 <commandid seqid="1" envid="6698699123101735704" />
 <resp code="200">SUCCESS_OK</resp>
 <data>
 <chanib uri="ma-chan://example.com/2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 overridemembers="false" behavior="UNSET" topic="" disabled="false">
 <msg id="grpchat"
 chanUri="ma-chan://example.com/2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 author="sip:johndoe@example.com" authdisp="John Doe"
 alert="true" chatId="78" ts="2011-10-21T21:52:47.233Z">
 <chat>Let's meet!</chat>
 </msg>
 <msg id="grpchat"
 chanUri="ma-chan://example.com/2a1a367c-5c14-4215-b5ae-d04eacb3b203"
 author="sip:janedoe@example.com" authdisp="Jane Doe"
 alert="false" chatId="79" ts="2011-10-22T00:21:06.993Z">
 <chat>Where?</chat>
 <rtf>
{\urtf1\fbidis\ansi\ansicpg1252\deff0\nouicompat\deflang1033{\fonttbl{\f0\fnil\fcharset0 Segoe UI;}{\f1\fnil Segoe UI;}}{\colortbl ;\red51\green51\blue51;}{*\generator Riched20 15.0.3419 (Debug)}{*\mmathPr\mwrapIndent1440 }\viewkind4\uc1\pard\cf1\f0\fs18 Where?\f1\par}
 </rtf>
 </msg>
 </chanib>
 <cnt value="2" over="false" />
 <status>2</status>
 </data>
 </rpl>
</xccos>
[bookmark: section_da0ab7311c684a9385f6097e47e2a733][bookmark: _Toc79581379]Chat Room Search
Client requests a chat room search:
<xccos ver="1" envid="6698699123101735688" xmlns="urn:parlano:xml:ns:xccos">
 <cmd id="cmd:chansrch" seqid="1">
 <data>
 <qib qtype="BYNAME" criteria="Proj" extended="false" />
 </data>
 </cmd>
</xccos>
Server returns the results:
<xccos xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ver="1" envid="1472189363123229257"
 xmlns="urn:parlano:xml:ns:xccos">
 <rpl id="rpl:chansrch" seqid="1">
 <commandid seqid="1" envid="6698699123101735688" />
 <resp code="200">SUCCESS_OK</resp>
 <data>
 <chanib name="Projects"
 description="Internal projects"
 parent="ma-cat://example.com/2642ebba-f56a-4891-9b92-3991eb865c92"
 uri="ma-chan://example.com/e145b4be-d76a-4854-bac9-6cd101a96650"
 overridemembers="false" behavior="NORMAL" topic="" disabled="false">
 <audit updatedby="Admin" updatedon="2011-10-03T21:21:52.9538233Z"
 createdby="Admin" createdon="2011-10-03T21:21:52.9538233Z" />
 <info id="urn:parlano:ma:info:ucnt">1</info>
 <info id="urn:parlano:ma:info:visibility">SCOPED</info>
 <prop id="urn:parlano:ma:prop:invite">True</prop>
 </chanib>
 <cnt value="1" over="false" />
 </data>
 </rpl>
</xccos>

[bookmark: section_8182c3e020e74da2974893f83778a916][bookmark: _Toc79581380]Chat Room Content Search by Date
Client sends the search request:
<xccos ver="1" envid="6698699123101735689" xmlns="urn:parlano:xml:ns:xccos">
 <cmd id="cmd:bcbydate" seqid="1">
 <data>
 <bcs cmp="OR">
 <limit cnt="50" />
 <text mt="PP">Joe</text>
 <matchcase>false</matchcase>
 <searchbkwds>true</searchbkwds>
 <sortbkwds>true</sortbkwds>
 <date from="2004-12-15T22:02:50Z" to="2011-10-28T21:11:57.1247226Z" />
 <cib uri="ma-chan://example.com/66b00dd5-6f18-4b6c-b51f-f2c7aada05cf"
 overridemembers="false" behavior="UNSET" disabled="false" />
 </bcs>
 </data>
 </cmd>
</xccos>
Server returns the matching chats:
<xccos xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ver="1" envid="1472189363123229258"
 xmlns="urn:parlano:xml:ns:xccos">
 <rpl id="rpl:bc" seqid="1">
 <commandid seqid="1" envid="6698699123101735689" />
 <resp code="200">SUCCESS_OK</resp>
 <data>
 <chanib uri="ma-chan://example.com/66b00dd5-6f18-4b6c-b51f-f2c7aada05cf">
 <msg id="grpchat"
 chanUri="ma-chan://example.com/66b00dd5-6f18-4b6c-b51f-f2c7aada05cf"
 author="sip:janedoe@example.com" authdisp="Jane Doe"
 alert="false" chatId="20" ts="2011-10-26T23:06:20.99Z">
 <chat>@Joe: no, I'm on a W14 one, it seems.</chat>
 </msg>
 <msg id="grpchat"
 chanUri="ma-chan://example.com/66b00dd5-6f18-4b6c-b51f-f2c7aada05cf"
 author="sip:johnsm@example.com" authdisp="John Smith"
 alert="false" chatId="3" ts="2011-10-07T17:45:59.873Z">
 <chat>Who is Joe?</chat>
 </msg>
 </chanib>
 <cnt value="2" over="false" />
 </data>
 </rpl>
</xccos>
[bookmark: section_4b88d180e9914227b61e2ebadc00afba][bookmark: _Toc79581381]Sending Chats
Client sends a chat:
<xccos ver="1" envid="6698699123101735682" xmlns="urn:parlano:xml:ns:xccos">
 <grpchat id="grpchat" seqid="1"
 chanUri="ma-chan://example.com/93489432-b6be-4c67-932f-09e39a162072"
 author="sip:johns@example.com" authdisp=""
 alert="false" chatId="0" ts="2011-10-27T21:09:48.3368091Z">
 <originatingMessageId seqid="1" envid="6698699123101735682" />
 <chat>Hello, World!</chat>
 </grpchat>
</xccos>
Server replies to the client and sends a similar message to all the other participants:
<xccos xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ver="1" envid="1472189363123229226"
 xmlns="urn:parlano:xml:ns:xccos">
 <grpchat id="grpchat" seqid="1"
 chanUri="ma-chan://example.com/93489432-b6be-4c67-932f-09e39a162072"
 author="sip:johnsm@example.com" authdisp="John Smith"
 alert="false" chatId="227" ts="2011-10-27T21:09:50.247Z">
 <originatingMessageId seqid="1" envid="6698699123101735682" />
 <chat>Hello, World!</chat>
 </grpchat>
</xccos>
[bookmark: section_ccbbc8760fc64c7db936de785870664b][bookmark: _Toc79581382]Security
[bookmark: section_b2fa704d837e4fcba06b619996824ed1][bookmark: _Toc79581383]Security Considerations for Implementers
None.
[bookmark: section_19b9a1cc284a48639ec5a9e1c3ddef89][bookmark: _Toc79581384]Index of Security Parameters
None.
[bookmark: section_4b4b3858b7b7406b841ca17a2d50371c][bookmark: _Toc79581385]Appendix A: Full XML Schema
[bookmark: section_892d23be628a49ab9f46ff63d0a0bda7][bookmark: _Toc79581386]XCCOS Schema
The namespace is identified by the URN:
urn:parlano:xml:ns:xccos
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema version="1" xmlns="urn:parlano:xml:ns:xccos" xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="urn:parlano:xml:ns:xccos" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!-- XCCOS Control Document Definition +++++++++++++++++++++++++++++++ -->
 <xs:element name="xccos" type="XccosControlPrimitive">
 </xs:element>
 <xs:complexType name="XccosControlPrimitive">
 <xs:sequence>
 <xs:choice minOccurs="1" maxOccurs="unbounded">
 <xs:element name="cmd" type="XccosCommandPrimitive" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="rpl" type="XccosReplyPrimitive" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="ntc" type="XccosNoticePrimitive" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="err" type="XccosErrorPrimitive" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="sys" type="XccosSystemPrimitive" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="grpchat" type="GroupChatDataBlock" minOccurs="0" maxOccurs="unbounded" />
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="ver" type="xs:nonNegativeInteger" use="required" />
 <xs:attribute name="envid" type="xs:positiveInteger" use="required" />
 </xs:complexType>
 <!-- XCCOS Payload Definitions +++++++++++++++++++++++++++++++++++++++ -->
 <!-- XCCOS Command Definition -->
 <xs:complexType name="XccosPrimitive">
 <xs:attribute name="id" type="xs:anyURI" use="required" />
 <xs:attribute name="seqid" type="xs:nonNegativeInteger" use="required" />
 </xs:complexType>
 <xs:complexType name="XccosResponsePrimitive">
 <xs:complexContent>
 <xs:extension base="XccosPrimitive">
 <xs:sequence>
 <xs:element name="commandid" type="XccosMessageIdentifier" minOccurs="0" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="XccosCommandPrimitive">
 <xs:complexContent>
 <xs:extension base="XccosPrimitive">
 <xs:sequence>
 <xs:element name="data" type="XccosCommandDataBlock" nillable="false" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- XCCOS Reply Definition -->
 <xs:complexType name="XccosReplyPrimitive">
 <xs:complexContent>
 <xs:extension base="XccosResponsePrimitive">
 <xs:sequence>
 <xs:element name="resp" type="ResponseBlock" nillable="true" />
 <xs:element name="data" type="XccosReplyNoticeDataBlock" minOccurs="0" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- Message identifier used to identify a single unique message. -->
 <xs:complexType name="XccosMessageIdentifier">
 <xs:attribute name="seqid" type="xs:nonNegativeInteger" use="required" />
 <xs:attribute name="envid" type="xs:nonNegativeInteger" use="required" />
 </xs:complexType>
 <!-- XCCOS Notice Definition -->
 <xs:complexType name="XccosNoticePrimitive">
 <xs:complexContent>
 <xs:extension base="XccosPrimitive">
 <xs:sequence>
 <xs:element name="data" type="XccosReplyNoticeDataBlock" nillable="false" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- XCCOS Error Definition -->
 <xs:complexType name="XccosErrorPrimitive">
 <xs:complexContent>
 <xs:extension base="XccosResponsePrimitive">
 <xs:sequence>
 <xs:element name="resp" type="ResponseBlock" nillable="false" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- XCCOS Status Definition -->
 <xs:complexType name="XccosSystemPrimitive">
 <xs:complexContent>
 <xs:extension base="XccosPrimitive">
 <xs:sequence>
 <xs:element name="status" type="XccosSystemStatusDataBlock" minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- XCCOS Status Definition -->
 <xs:complexType name="XccosSystemStatusDataBlock">
 <xs:attribute name="busy" type="xs:boolean" use="optional" default="false" />
 </xs:complexType>
 <!-- XCCOS Data Block Definitions ++ -->
 <xs:complexType name="XccosCommandDataBlock">
 <xs:sequence>
 <xs:element name="chanib" type="ChannelInformationDataBlock" minOccurs="0" />
 <xs:element name="catib" type="CategoryInformationDataBlock" minOccurs="0" />
 <xs:element name="uib" type="UserInformationDataBlock" minOccurs="0" />
 <xs:element name="gib" type="GroupInformationDataBlock" minOccurs="0" />
 <xs:element name="bcq" type="BcQueryDataBlock" minOccurs="0" />
 <xs:element name="bcs" type="BcSearchDataBlock" minOccurs="0" />
 <xs:element name="qib" type="QueryInformationDataBlock" minOccurs="0" />
 <xs:element name="pref" type="PreferenceDataBlock" minOccurs="0" />
 <xs:element name="chanid" type="ChannelIdsInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="sib" type="ServerInformationDataBlock" minOccurs="0" />
 <xs:element name="inv" type="InviteDataBlock" minOccurs="0" />
 <xs:element name="association" type="AssociationDataBlock" minOccurs="0" />
 <xs:element name="siops" type="SiopWhitelistDataBlock" minOccurs="0" />
 <xs:element name="scope" type="ScopeInformationDataBlock" minOccurs="0" />
 <xs:element name="filtib" type="FilterInformationDataBlock" minOccurs="0" />
 <xs:element name="delchat" type="DeleteChatDataBlock" minOccurs="0" />
 <xs:element name="purgeb" type="PurgeChannelDataBlock" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="XccosReplyNoticeDataBlock">
 <xs:sequence>
 <xs:element name="chanib" type="ChannelInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="catib" type="CategoryInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="uib" type="UserInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="gib" type="GroupInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="fib" type="FailureInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="hash" type="HashInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="cnt" type="ResultCountDataBlock" minOccurs="0" />
 <xs:element name="status" type="xs:nonNegativeInteger" minOccurs="0" maxOccurs="1" />
 <xs:element name="pref" type="PreferenceDataBlock" minOccurs="0" />
 <xs:element name="tag" type="xs:string" minOccurs="0" />
 <xs:element name="sib" type="ServerInformationDataBlock" minOccurs="0" />
 <xs:element name="grpchat" type="GroupChatDataBlock" minOccurs="0" />
 <xs:element name="siops" type="SiopWhitelistDataBlock" minOccurs="0" />
 <xs:element name="association" type="AssociationDataBlock" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="SiopWhitelistDataBlock">
 <xs:sequence>
 <xs:element name="siop" type="SiopDataBlock" minOccurs="1" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="SiopDataBlock">
 <xs:attribute name="guid" type="xs:string" use="optional" />
 <xs:attribute name="name" type="xs:normalizedString" use="optional" />
 <xs:attribute name="uri" type="xs:normalizedString" use="optional" />
 <xs:attribute name="action" type="SiopVerbEnum" use="optional" />
 </xs:complexType>

 <xs:simpleType name="SiopVerbEnum">
 <xs:restriction base="xs:string">
 <xs:enumeration value="A" />
 <xs:enumeration value="R" />
 <xs:enumeration value="M" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="QueryInformationDataBlock">
 <xs:attribute name="qtype" type="xs:anyURI" use="optional" />
 <xs:attribute name="criteria" type="xs:normalizedString" use="optional" />
 <xs:attribute name="recurse" type="xs:boolean" use="optional" />
 <xs:attribute name="extended" type="xs:boolean" use="optional" />
 <xs:attribute name="matchAll" type="xs:boolean" use="optional" default="true"/>
 <xs:attribute name="matchExactPhrase" type="xs:boolean" use="optional" default="true"/>
 <xs:attribute name="purpose" type="xs:int" />
 <xs:attribute name="keywords" type="xs:normalizedString" use="optional" />
 <xs:attribute name="catUri" type="xs:anyURI" use="optional" />
 <xs:attribute name="maxResults" type="xs:int" use="optional" />
 </xs:complexType>
 <xs:complexType name="FilterInformationDataBlock">
 <xs:sequence>
 <xs:element name="member" type="Ace" minOccurs="0" maxOccurs="1" />
 <xs:element name="manager" type="Ace" minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="criteria" type="xs:normalizedString" use="optional" />
 <xs:attribute name="includeTopic" type="xs:boolean" default="false" />
 <xs:attribute name="matchAll" type="xs:boolean" use="optional" default="true"/>
 <xs:attribute name="matchExactPhrase" type="xs:boolean" use="optional" default="true"/>
 <xs:attribute name="catUri" type="xs:anyURI" use="optional" />
 <xs:attribute name="addinGuid" type="xs:string" use="optional" />
 <xs:attribute name="disabled" type="xs:boolean" use="optional" />
 <xs:attribute name="vis" type="xs:int" use="optional" />
 <xs:attribute name="type" type="xs:int" use="optional" />
 <xs:attribute name="invites" type="xs:string" use="optional" />
 <xs:attribute name="searchInvites" type="xs:boolean" default="false" />
 <xs:attribute name="exceedsMB" type="xs:int" use="optional" />
 <xs:attribute name="maxResults" type="xs:int" use="optional" />
 </xs:complexType>
 <xs:complexType name="InformationDataBlock" abstract="true">
 <xs:sequence>
 <xs:element name="uib" type="UserInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="gib" type="GroupInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="aib" type="ActiveInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="AuditableInformationDataBlock" abstract="true">
 <xs:complexContent>
 <xs:extension base="InformationDataBlock">
 <xs:sequence>
 <xs:element name="audit" type="AuditDataBlock" minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="NodeInformationDataBlock" abstract="true">
 <xs:complexContent>
 <xs:extension base="AuditableInformationDataBlock">
 <xs:sequence>
 <xs:element name="info" type="InfoField" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="prop" type="PropertyField" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="ace" type="Ace" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:normalizedString" use="optional" />
 <xs:attribute name="description" type="xs:normalizedString" use="optional" />
 <xs:attribute name="parent" type="xs:anyURI" use="optional" />
 <xs:attribute name="uri" type="xs:anyURI" use="optional" />
 <xs:attribute name="overridemembers" type="xs:boolean" use="optional" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="ChannelInformationDataBlock">
 <xs:complexContent>
 <xs:extension base="NodeInformationDataBlock">
 <xs:sequence>
 <xs:element name="uset" type="UserSettingField" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="msg" type="GroupChatDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="members" type="RoleList" minOccurs="0" maxOccurs="1" />
 <xs:element name="managers" type="RoleList" minOccurs="0" maxOccurs="1" />
 <xs:element name="presenters" type="RoleList" minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="behavior" type="xs:anyURI" use="optional" />
 <xs:attribute name="topic" type="xs:normalizedString" use="optional" />
 <xs:attribute name="disabled" type="xs:boolean" use="optional" />
 <xs:attribute name="partListOff" type="xs:boolean" use="optional" />
 <xs:attribute name="siopname" type="xs:normalizedString" use="optional" />
 <xs:attribute name="siopurl" type="xs:anyURI" use="optional" />
 <xs:attribute name="siopid" type="xs:string" use="optional" />
 <xs:attribute name="keywords" type="xs:normalizedString" use="optional" />
 <xs:attribute name="filerepository" type="xs:anyURI" use="optional" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="CategoryInformationDataBlock">
 <xs:complexContent>
 <xs:extension base="NodeInformationDataBlock">
 <xs:sequence>
 <xs:element name="creators" type="RoleList" minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="childinherits" type="xs:boolean" use="optional" />
 <xs:attribute name="allowscopechange" type="xs:boolean" use="optional" />
 <xs:attribute name="numChatRooms" type="xs:nonNegativeInteger" use="optional" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="HashInformationDataBlock">
 <xs:complexContent>
 <xs:extension base="InformationDataBlock">
 <xs:attribute name="key" type="xs:string" use="required" />
 <xs:attribute name="value" type="xs:string" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="ChannelIdsInformationDataBlock">
 <xs:complexContent>
 <xs:extension base="HashInformationDataBlock">
 <xs:attribute name="domain" type="xs:string" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="FailureInformationDataBlock">
 <xs:complexContent>
 <xs:extension base="HashInformationDataBlock">
 <xs:attribute name="domain" type="xs:normalizedString" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="ActiveInformationDataBlock">
 <xs:complexContent>
 <xs:extension base="HashInformationDataBlock">
 <xs:attribute name="domain" type="xs:normalizedString" use="optional" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="ServerInformationDataBlock">
 <xs:complexContent>
 <xs:extension base="InformationDataBlock">
 <xs:attribute name="domain" type="xs:anyURI" use="required" />
 <xs:attribute name="infoType" type="xs:long" use="required" />
 <xs:attribute name="serverTime" type="Iso8601TimeString" use="optional" />
 <xs:attribute name="searchLimit" type="xs:int" use="optional" />
 <xs:attribute name="messageSizeLimit" type="xs:int" use="optional" />
 <xs:attribute name="storySizeLimit" type="xs:int" use="optional" />
 <xs:attribute name="rootUri" type="xs:anyURI" use="optional"/>
 <xs:attribute name="dbVersion" type="xs:string" use="optional"/>
 <xs:attribute name="clientVersion" type="xs:string" use="optional"/>
 <xs:attribute name="serverVersion" type="xs:string" use="optional"/>
 <xs:attribute name="displayName" type = "xs:string" use="optional"/>
 <xs:attribute name="roomManagementUrl" type = "xs:anyURI" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="InviteDataBlock">
 <xs:attribute name="register" type="xs:boolean" use="optional" default="true" />
 <xs:attribute name="inviteId" type="xs:unsignedLong" use="optional" default="0" />
 <xs:attribute name="domain" type="xs:string" use="required" />
 </xs:complexType>
 <xs:complexType name="AssociationDataBlock">
 <xs:sequence>
 <xs:element name="chanib" type="ChannelInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="domain" type="xs:string" use="required" />
 <xs:attribute name="type" type="AssociationTypeEnum" use="required" />
 <xs:attribute name="maxResults" type="xs:unsignedInt" use="optional" default="100"/>
 <xs:attribute name="hash" type="xs:unsignedLong" use="optional" />
 </xs:complexType>
 <xs:simpleType name="AssociationTypeEnum">
 <xs:restriction base="xs:string">
 <xs:enumeration value="MEMBER" />
 <xs:enumeration value="MANAGER" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ScopeInformationDataBlock">
 <xs:sequence>
 <xs:element name="entry" type="ScopeDefinition" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ScopeDefinition">
 <xs:attribute name="uri" type="xs:anyURI" use="optional"/>
 <xs:attribute name="path" type="xs:string" use="optional"/>
 <xs:attribute name="denied" type="xs:boolean" use="required"/>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 <xs:attribute name="guid" type="xs:string" use="optional"/>
 <xs:attribute name="type" type="xs:string" use="optional"/>
 </xs:complexType>
 <!-- Audit fields: All the audit fields that should be sent over the wire -->
 <xs:complexType name="AuditDataBlock">
 <xs:attribute name="updatedby" type="Username" use="optional" />
 <xs:attribute name="updatedon" type="Iso8601TimeString" use="optional" />
 <xs:attribute name="createdby" type="Username" use="optional" />
 <xs:attribute name="createdon" type="Iso8601TimeString" use="optional" />
 </xs:complexType>
 <!-- Permission fields for principals: All the permission fields that should be sent over the wire -->
 <xs:complexType name="UserPermissionDataBlock">
 <xs:attribute name="defined" type="xs:nonNegativeInteger" use="optional" />
 <xs:attribute name="inherited" type="xs:nonNegativeInteger" use="optional" />
 <xs:attribute name="inheriting" type="xs:boolean" use="optional" />
 </xs:complexType>
 <!-- The User Information Block -->
 <xs:complexType name="UserInformationDataBlock">
 <xs:complexContent>
 <xs:extension base="AuditableInformationDataBlock">
 <xs:sequence>
 <xs:element name="from" type="From" minOccurs="0" maxOccurs="1" />
 <!--When UserInfo objects specify their affiliations, this should be set to minOccurs=1 -->
 <xs:element name="affiliation" type="GroupInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="perms" type="UserPermissionDataBlock" minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="uri" type="Username" use="required" />
 <xs:attribute name="guid" type="xs:string" use="required" />
 <xs:attribute name="type" type="xs:nonNegativeInteger" use="required" />
 <xs:attribute name="uname" type="xs:string" use="optional" />
 <xs:attribute name="email" type="xs:string" use="optional" />
 <xs:attribute name="disabled" type="xs:boolean" use="required" />
 <xs:attribute name="dispname" type="xs:string" use="optional" />
 <xs:attribute name="company" type="xs:string" use="optional" />
 <xs:attribute name="path" type="xs:string" use="optional" />
 <xs:attribute name="chperms" type="xs:integer" use="optional" />
 <xs:attribute name="id" type="xs:integer" use="optional" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- Group References: The Group Stub and the Group Information Block -->
 <xs:complexType name="GroupInformationDataBlock">
 <xs:complexContent>
 <xs:extension base="AuditableInformationDataBlock">
 <xs:sequence>
 <xs:element name="from" type="From" minOccurs="0" maxOccurs="1" />
 <xs:element name="perms" type="UserPermissionDataBlock" minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="guid" type="xs:string" use="required" />
 <xs:attribute name="type" type="xs:nonNegativeInteger" use="optional" />
 <xs:attribute name="name" type="xs:string" use="optional" />
 <xs:attribute name="path" type="xs:string" use="optional" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- Used in GIB and UIB for indicating where the particular user or group was specified in the node hierarchy. -->
 <xs:complexType name="From">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="name" type="xs:string" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <!-- Preference References: The Preference Data Block -->
 <xs:complexType name="PreferenceDataBlock">
 <xs:attribute name="label" type="xs:string" use="required" />
 <xs:attribute name="seqid" type="xs:positiveInteger" use="required" />
 <xs:attribute name="createdefault" type="xs:boolean" use="required" />
 <xs:attribute name="content" type="xs:string" use="optional" />
 </xs:complexType>
 <!-- Backchat References: Queries, Searches, and Returns -->
 <xs:complexType name="BcQueryDataBlock">
 <xs:choice>
 <xs:element name="last" type="CountSpecifier" minOccurs="0" maxOccurs="1" />
 <xs:element name="msgid" type="BcQueryMsgID" minOccurs="0" maxOccurs="1" />
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="BcSearchDataBlock">
 <xs:sequence>
 <xs:element name="limit" type="CountSpecifier" minOccurs="0" maxOccurs="1" />
 <xs:element name="text" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="mt" type="SearchMatchTypeEnum" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="msgid" type="xs:normalizedString" minOccurs="0" maxOccurs="1" />
 <xs:element name="matchcase" type="xs:boolean" nillable="false" minOccurs="1" maxOccurs="1" />
 <xs:element name="searchbkwds" type="xs:boolean" nillable="false" minOccurs="1" maxOccurs="1" />
 <xs:element name="sortbkwds" type="xs:boolean" nillable="false" minOccurs="1" maxOccurs="1" />
 <xs:element name="date" type="DateRangeSpecifier" minOccurs="0" maxOccurs="1" />
 <xs:element name="uib" type="UserInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="cib" type="ChannelInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="cmp" type="LogicOperatorEnum" use="required" />
 </xs:complexType>
 <xs:complexType name="ResultCountDataBlock">
 <xs:simpleContent>
 <xs:extension base="EmptyEnumeration">
 <xs:attribute name="value" type="xs:positiveInteger" use="required" />
 <xs:attribute name="over" type="xs:boolean" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="DeleteChatDataBlock">
 <xs:sequence>
 <xs:element name="bcs" type="BcSearchDataBlock" minOccurs="1"/>
 <xs:element name="chat" type="xs:string" minOccurs="0"/>
 <xs:element name="rtf" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="PurgeChannelDataBlock">
 <xs:sequence>
 <xs:element name="cib" type="ChannelInformationDataBlock" minOccurs="1" />
 </xs:sequence>
 <xs:attribute name="uptodate" type="Iso8601TimeString" use="required" />
 <xs:attribute name="nocommit" type="xs:boolean" use="required" />
 </xs:complexType>
 <xs:complexType name="PurgeChannelSizesDataBlock">
 <xs:sequence>
 <xs:element name="purged" type="CountAndSizeSpecifier" minOccurs="1" />
 <xs:element name="left" type="CountAndSizeSpecifier" minOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 <!-- +++ -->
 <xs:complexType name="GroupChatDataBlock">
 <xs:complexContent>
 <xs:extension base="XccosPrimitive">
 <xs:sequence>
 <xs:element name="originatingMessageId" type="XccosMessageIdentifier" minOccurs="0" />
 <xs:element name="chat" type="xs:string" />
 <xs:element name="rtf" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="chanUri" type="xs:anyURI" use="required" />
 <xs:attribute name="author" type="Username" use="required" />
 <xs:attribute name="authdisp" type="xs:string" use="required" />
 <xs:attribute name="alert" type="xs:boolean" use="required" />
 <xs:attribute name="chatId" type="xs:long" use="required" />
 <xs:attribute name="ts" type="Iso8601TimeString" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="BcQueryMsgID">
 <xs:simpleContent>
 <xs:extension base="EmptyEnumeration">
 <xs:attribute name="id" type="xs:positiveInteger" use="required" />
 <xs:attribute name="cnt" type="xs:positiveInteger" use="required" />
 <xs:attribute name="pre" type="xs:positiveInteger" use="optional" />
 <xs:attribute name="post" type="xs:positiveInteger" use="optional" />
 <xs:attribute name="jump" type="xs:boolean" use="optional" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="AceVerbEnum">
 <xs:restriction base="xs:string">
 <xs:enumeration value="A" />
 <xs:enumeration value="R" />
 <xs:enumeration value="X" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="Ace">
 <xs:sequence>
 <xs:element name="uib" type="UserInformationDataBlock" minOccurs="0" maxOccurs="1" />
 <xs:element name="gib" type="GroupInformationDataBlock" minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="verb" type="AceVerbEnum" use="required" />
 </xs:complexType>
 <xs:complexType name="RoleList">
 <xs:sequence>
 <xs:element name="prins" type="Ace" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="uib" type="UserInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="gib" type="GroupInformationDataBlock" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 <!-- Base Type Definitions ++ -->
 <xs:complexType name="CountSpecifier">
 <xs:simpleContent>
 <xs:extension base="EmptyEnumeration">
 <xs:attribute name="cnt" type="xs:positiveInteger" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="DateRangeSpecifier">
 <xs:simpleContent>
 <xs:extension base="EmptyEnumeration">
 <xs:attribute name="from" type="Iso8601TimeString" use="required" />
 <xs:attribute name="to" type="Iso8601TimeString" use="optional" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="CountAndSizeSpecifier">
 <xs:simpleContent>
 <xs:extension base="EmptyEnumeration">
 <xs:attribute name="cnt" type="xs:nonNegativeInteger" use="required" />
 <xs:attribute name="sizemb" type="xs:nonNegativeInteger" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="EmptyEnumeration">
 <xs:restriction base="xs:string">
 <xs:enumeration value="" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ErrorCode">
 <xs:restriction base="xs:positiveInteger">
 <xs:whiteSpace value="collapse" />
 <xs:minInclusive value="100" />
 <xs:maxExclusive value="700" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Iso8601TimeString">
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="collapse" />
 <xs:pattern value="[0-9]{8}T[0-9]{6}Z?" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="LogicOperatorEnum">
 <xs:restriction base="xs:string">
 <xs:enumeration value="AND" />
 <xs:enumeration value="OR" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ResponseBlock">
 <xs:simpleContent>
 <xs:extension base="xs:normalizedString">
 <xs:attribute name="code" type="ErrorCode" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="SearchMatchTypeEnum">
 <xs:restriction base="xs:string">
 <xs:enumeration value="PP" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Username">
 <xs:restriction base="xs:normalizedString">
 <xs:whiteSpace value="collapse" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="Field">
 <xs:simpleContent>
 <xs:extension base="xs:normalizedString">
 <xs:attribute name="id" type="xs:anyURI" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="InfoField">
 <xs:complexContent>
 <xs:extension base="Field">
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="PropertyField">
 <xs:complexContent>
 <xs:extension base="Field">
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>
[bookmark: section_857e17ada32547c3a36720862d75d68e][bookmark: _Toc79581387]Appendix B: Product Behavior
The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include updates to those products.
· Microsoft Lync Client 2013/Skype for Business
· Microsoft Skype for Business 2016
· Microsoft Skype for Business 2019
· Microsoft Skype for Business 2021
Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base (KB) number appears with a product name, the behavior changed in that update. The new behavior also applies to subsequent updates unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.
Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.
[bookmark: section_54afb0e1da3d4b479acbd1b408826a96][bookmark: _Toc79581388]Change Tracking
This section identifies changes that were made to this document since the last release. Changes are classified as Major, Minor, or None.
The revision class Major means that the technical content in the document was significantly revised. Major changes affect protocol interoperability or implementation. Examples of major changes are:
· A document revision that incorporates changes to interoperability requirements.
· A document revision that captures changes to protocol functionality.
The revision class Minor means that the meaning of the technical content was clarified. Minor changes do not affect protocol interoperability or implementation. Examples of minor changes are updates to clarify ambiguity at the sentence, paragraph, or table level.
The revision class None means that no new technical changes were introduced. Minor editorial and formatting changes may have been made, but the relevant technical content is identical to the last released version.
The changes made to this document are listed in the following table. For more information, please contact dochelp@microsoft.com.
	Section
	Description
	Revision class

	7 Appendix B: Product Behavior
	Updated list of supported products.
	Major

[bookmark: section_6626a45953ae4cafa2d00bbd2cd3725d][bookmark: _Toc79581389]Index
91 / 91
[MS-XCCOSIP] - v20210817
Extensible Chat Control Over Session Initiation Protocol (SIP)
Copyright © 2021 Microsoft Corporation
Release: August 17, 2021
A

Applicability 13

C

Capability negotiation 13
Change tracking 89
Client
 overview 43

F

Fields - vendor-extensible 13

G

Glossary 9

I

Implementer - security considerations 77
Index of security parameters 77
Informative references 11
Introduction 9

M

Messages (section 1.4 12, section 2.2 14)
 Namespaces 14
 transport 14
 XCCOS syntax 14

N

Namespaces message 14
Normative references 11

O

Overview (synopsis) 11

P

Parameters - security index 77
Preconditions 13
Prerequisites 13
Product behavior 88

R

References 10
 informative 11
 normative 11
Relationship to other protocols 12

S

Security
 implementer considerations 77
 parameter index 77
Server
 overview 62
Standards assignments 13

T

Tracking changes 89
Transport 14

V

Vendor-extensible fields 13
Versioning 13

X

XCCOS syntax message 14
[bookmark: EndOfDocument_ST]
86 / 86
[MS-XCCOSIP] - v20210817
Extensible Chat Control Over Session Initiation Protocol (SIP)
Copyright © 2021 Microsoft Corporation
Release: August 17, 2021
image1.bin

image2.bin
XCCOS Client

Session Establishment

XCCOS Server

|
|
|
i<
|
|
|
|
|
|

200 OK for SIP INFO
|
|
|

SIP INFO with XCCOS Payload (Request)

' >

R A

|
|
2000K forSIPINFO___——

SIP INFO with XCCOS Payload (Response)————

