[bookmark: _GoBack][MS-ES2018]:
Microsoft Edge ECMAScript 2018 Language Specification (9th edition) Standards Support Document

Intellectual Property Rights Notice for Open Specifications Documentation
· Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
· Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
· No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
· Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
· License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
· Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
· Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.
Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Support. For questions and support, please contact dochelp@microsoft.com.
Revision Summary
	Date
	Revision History
	Revision Class
	Comments

	11/27/2018
	1.0
	New
	Released new document.

Table of Contents
1	Introduction	5
1.1	Glossary	5
1.2	References	5
1.2.1	Normative References	5
1.2.2	Informative References	5
1.3	Microsoft Implementations	5
1.4	Standards Support Requirements	6
1.5	Notation	6
2	Standards Support Statements	7
2.1	Normative Variations	7
2.1.1	[ECMA-262/9:2018] Section 7.1.1 ToPrimitive (input [, PreferredType])	7
2.1.2	[ECMA-262/9:2018] Section 7.4.6 IteratorClose (iteratorRecord, completion)	7
2.1.3	[ECMA-262/9:2018] Section 7.4.7 AsyncIteratorClose (iteratorRecord, completion)	8
2.1.4	[ECMA-262/9:2018] Section 9.2.7 AsyncGeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)	8
2.1.5	[ECMA-262/9:2018] Section 11.8.6 Template Literal Lexical Components	9
2.1.6	[ECMA-262/9:2018] Section 11.9.1 Rules of Automatic Semicolon Insertion	10
2.1.7	[ECMA-262/9:2018] Section 12.4.4.1 Runtime Semantics: Evaluation	10
2.1.8	[ECMA-262/9:2018] Section 12.4.5.1 Runtime Semantics: Evaluation	11
2.1.9	[ECMA-262/9:2018] Section 12.4.6.1 Runtime Semantics: Evaluation	12
2.1.10	[ECMA-262/9:2018] Section 12.4.7.1 Runtime Semantics Evaluation	12
2.1.11	[ECMA-262/9:2018] Section 12.10.4 Runtime Semantics: InstanceofOperator (V, target)	13
2.1.12	[ECMA-262/9:2018] Section 12.15.4 Runtime Semantics: Evaluation	13
2.1.13	[ECMA-262/9:2018] Section 13 ECMAScript Language: Statements and Declarations	15
2.1.14	[ECMA-262/9:2018] Section 13.2.1 Static Semantics: Early Errors	16
2.1.15	[ECMA-262/9:2018] Section 13.7.4.1 Static Semantics: Early Errors	16
2.1.16	[ECMA-262/9:2018] Section 13.7.5.1 Static Semantics: Early Errors	17
2.1.17	[ECMA-262/9:2018] Section 13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation (TDZnames, expr, iterationKind)	17
2.1.18	[ECMA-262/9:2018] Section 13.13 Labelled Statements	18
2.1.19	[ECMA-262/9:2018] Section 14.1.2 Static Semantics: Early Errors	19
2.1.20	[ECMA-262/9:2018] Section 14.3.7 Runtime Semantics: DefineMethod	19
2.1.21	[ECMA-262/9:2018] Section 14.5 Async Generator Function Definitions	20
2.1.22	[ECMA-262/9:2018] Section 14.6.13 Runtime Semantics: ClassDefinitionEvaluation	21
2.1.23	[ECMA-262/9:2018] Section 15.1.1 Static Semantics: Early Errors	21
2.1.24	[ECMA-262/9:2018] Section 16.2 Forbidden Extensions	21
2.1.25	[ECMA-262/9:2018] Section 18.4.1 Atomics	22
2.1.26	[ECMA-262/9:2018] Section 19.1.2.20 Object.setPrototypeOf (O, proto)	22
2.1.27	[ECMA-262/9:2018] Section 19.1.3.2 Object.prototype.hasOwnProperty (V)	23
2.1.28	[ECMA-262/9:2018] Section 19.1.3.5 Object.prototype.toLocaleString ([reserved1 [, reserved2]])	23
2.1.29	[ECMA-262/9:2018] Section 19.1.3.6 Object.prototype.toString ()	24
2.1.30	[ECMA-262/9:2018] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args)	24
2.1.31	[ECMA-262/9:2018] Section 19.2.3.6 Function.prototype [@@hasInstance] (V)	25
2.1.32	[ECMA-262/9:2018] Section 19.2.4.1 length	25
2.1.33	[ECMA-262/9:2018] Section 19.4.2 Properties of the Symbol Constructor	25
2.1.34	[ECMA-262/9:2018] Section 19.4.2.1 Symbol.asyncIterator	26
2.1.35	[ECMA-262/9:2018] Section 19.4.3.4 Symbol.prototype [@@toPrimitive] (hint)	26
2.1.36	[ECMA-262/9:2018] Section 19.4.3.5 Symbol.prototype [@@toStringTag]	27
2.1.37	[ECMA-262/9:2018] Section 19.5.3 Properties of the Error Prototype Object	27
2.1.38	[ECMA-262/9:2018] Section 20.3.1.14 TimeClip (time)	27
2.1.39	[ECMA-262/9:2018] Section 20.3.1.15 Date Time String Format	28
2.1.40	[ECMA-262/9:2018] Section 20.3.4 Properties of the Date Prototype Object	28
2.1.41	[ECMA-262/9:2018] Section 21.1.3.24 String.prototype.toLowerCase ()	29
2.1.42	[ECMA-262/9:2018] Section 21.1.3.26 String.prototype.toUpperCase ()	29
2.1.43	[ECMA-262/9:2018] Section 21.2.1 Patterns	30
2.1.44	[ECMA-262/9:2018] Section 21.2.2.10 CharacterEscape	30
2.1.45	[ECMA-262/9:2018] Section 21.2.5 Properties of the RegExp Prototype Object	31
2.1.46	[ECMA-262/9:2018] Section 21.2.5.2.3 AdvanceStringIndex (S, index, unicode)	32
2.1.47	[ECMA-262/9:2018] Section 21.2.5.3 get RegExp.prototype.dotAll	32
2.1.48	[ECMA-262/9:2018] Section 21.2.6.1 lastIndex	33
2.1.49	[ECMA-262/9:2018] Section 22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O)	33
2.1.50	[ECMA-262/9:2018] Section 22.1.3.3 Array.prototype.copyWithin (target, start [, end])	33
2.1.51	[ECMA-262/9:2018] Section 22.1.3.18 Array.prototype.push (...items)	34
2.1.52	[ECMA-262/9:2018] Section 22.1.3.25 Array.prototype.sort (comparefn)	35
2.1.53	[ECMA-262/9:2018] Section 22.1.3.27 Array.prototype.toLocaleString ([reserved1 [, reserved2]])	35
2.1.54	[ECMA-262/9:2018] Section 24.2 SharedArrayBuffer Objects	36
2.1.55	[ECMA-262/9:2018] Section 24.4 The Atomics Object	36
2.1.56	[ECMA-262/9:2018] Section 25.1.1.3 The AsyncIterable Interface	36
2.1.57	[ECMA-262/9:2018] Section 25.2.3.3 GeneratorFunction.prototype [@@toStringTag]	37
2.1.58	[ECMA-262/9:2018] Section 25.3 AsyncGeneratorFunction Objects	37
2.1.59	[ECMA-262/9:2018] Section 25.5 AsyncGenerator Objects	37
2.1.60	[ECMA-262/9:2018] Section 25.6.4 Properties of the Promise Constructor	38
2.1.61	[ECMA-262/9:2018] Section 25.6.4.1 Promise.all (iterable)	38
2.1.62	[ECMA-262/9:2018] Section 25.7 AsyncFunction Objects	39
2.2	Clarifications	39
2.3	Extensions	39
2.3.1	[ECMA-262/9:2018] Section 7.3.18 Invoke (V, P [, argumentsList])	39
2.3.2	[ECMA-262/9:2018] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args)	40
2.3.3	[ECMA-262/9:2018] Section 21.2.4 Properties of the RegExp Constructor	41
2.4	Error Handling	47
2.5	Security	47
3	Change Tracking	48
4	Index	49

[bookmark: section_b5e6dad168be458fb97b7d482351290b][bookmark: _Toc531070545]Introduction
This document describes the level of support provided by Microsoft Edge for the ECMAScript® 2018 Language Specification, [ECMA-262/9:2018], published June 2018. The [ECMA-262/9:2018] specification is the ninth edition of the ECMAScript Language Specification. Since publication of the first edition in 1997, ECMAScript has grown to be one of the most widely used general purpose programming languages. It is best known as the language embedded in web browsers but has also been widely adopted for server and embedded applications.
[bookmark: section_c4b0a133de7f4e10afb3cfcc21ad5b75][bookmark: _Toc531070546]Glossary
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
[bookmark: section_931960af67e042cbb06c3a1577ed3f61][bookmark: _Toc531070547]References
Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.
[bookmark: section_5ea8fd7506ae43a5905e63286d5920b9][bookmark: _Toc531070548]Normative References
We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.
[ECMA-262/9:2018] Ecma International, "ECMAScript® 2018 Language Specification", 9th Edition, Standard ECMA-262, June 2018, https://www.ecma-international.org/ecma-262/9.0/index.html#Title
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt
[bookmark: section_5acd9529a4eb43a6beda71a5ce4f135c][bookmark: _Toc531070549]Informative References
None.
[bookmark: section_eba6da48edec48dbaaa0d1ae3934b7da][bookmark: _Toc531070550]Microsoft Implementations
The following Microsoft web browsers implement some portion of the [ECMA-262/9:2018] specification:
· Microsoft Edge
Each browser version may implement multiple document rendering modes. The modes vary from one to another in support of the standard. The following table lists the document modes supported by each browser version.
	Browser Version
	Document Modes Supported

	Microsoft Edge
	EdgeHTML Mode

For each variation presented in this document there is a list of the document modes and browser versions that exhibit the behavior described by the variation. All combinations of modes and versions that are not listed conform to the specification. For example, the following list for a variation indicates that the variation exists in three document modes in all browser versions that support these modes:
Quirks Mode, IE7 Mode, and IE8 Mode (All Versions)
[bookmark: section_0b7fffa2767f4debb8c5fc62de9cbe6f][bookmark: _Toc531070551]Standards Support Requirements
To conform to [ECMA-262/9:2018], a user agent must implement all required portions of the specification. Any optional portions that have been implemented must also be implemented as described by the specification. Normative language is usually used to define both required and optional portions. (For more information, see [RFC2119].)
The following table lists the sections of [ECMA-262/9:2018] and whether they are considered normative or informative.
	Sections
	Normative/Informative

	1-6
	Informative

	7-27
	Normative

	Annex A
	Informative

	Annex B
	Normative

	Annex C, Annex D, Annex E,
Annex F, Annex G
	Informative

[bookmark: section_7c48911aa0314eda86f81220a712bd92][bookmark: _Toc531070552]Notation
The following notations are used in this document to differentiate between notes of clarification, variation from the specification, and points of extensibility.
	Notation
	Explanation

	C####
	This identifies a clarification of ambiguity in the target specification. This includes imprecise statements, omitted information, discrepancies, and errata. This does not include data formatting clarifications.

	V####
	This identifies an intended point of variability in the target specification such as the use of MAY, SHOULD, or RECOMMENDED. (See [RFC2119].) This does not include extensibility points.

	E####
	Because the use of extensibility points (such as optional implementation-specific data) can impair interoperability, this profile identifies such points in the target specification.

For document mode and browser version notation, see also section 1.3.
[bookmark: section_6871fa8f2d8d4440bd4ef8c5569f3509][bookmark: _Toc531070553]Standards Support Statements
This section contains all variations, clarifications, and extensions for the Microsoft implementation of [ECMA-262/9:2018].
· Section 2.1 describes normative variations from the MUST requirements of the specification.
· Section 2.2 describes clarifications of the MAY and SHOULD requirements.
· Section 2.3 describes extensions to the requirements.
· Section 2.4 considers error handling aspects of the implementation.
· Section 2.5 considers security aspects of the implementation.
[bookmark: section_2701bb1b326b476388e307040e352228][bookmark: _Toc531070554]Normative Variations
The following subsections describe normative variations from the MUST requirements of [ECMA-262/9:2018].
[bookmark: section_405aa4fa111111118e1e672547d60cc2][bookmark: _Toc531070555][ECMA-262/9:2018] Section 7.1.1 ToPrimitive (input [, PreferredType])
V0164: @@toPrimitive is not implemented
The specification states:
7.1.1 ToPrimitive (input [, PreferredType])

 The abstract operation ToPrimitive takes an input argument and an optional argument
 PreferredType. The abstract operation ToPrimitive converts its input argument to a
 non-Object type. If an object is capable of converting to more than one primitive
 type, it may use the optional hint PreferredType to favour that type. Conversion
 occurs according to ...:

 ...
 ... Type(input) is Object ...
 ...
 ... Let exoticToPrim be ? GetMethod(input, @@toPrimitive).
EdgeHTML Mode
@@toPrimitive is not implemented.

[bookmark: section_24b76dc611111111922ebee931320bb7][bookmark: _Toc531070556][ECMA-262/9:2018] Section 7.4.6 IteratorClose (iteratorRecord, completion)
V0187: IteratorClose is not correctly implemented
The specification states:
7.4.6 IteratorClose(iterator..., completion)

 The abstract operation IteratorClose with arguments iteratorRecord ["iterator" in
 specs prior to 2018] and completion is used to notify an iterator that it should
 perform any actions it would normally perform when it has reached its completed state:

 ... Assert: Type... is Object.
 ... Assert: completion is a Completion Record.

 ... Let return be ? GetMethod(iterator, "return").
 ... If return is undefined, return Completion(completion).
 ... Let innerResult be Call(return, iterator, «‍ »).
 ... If completion.[[type]] is throw, return Completion(completion).
 ... If innerResult.[[type]] is throw, return Completion(innerResult).
 ... If Type(innerResult.[[value]]) is not Object, throw a TypeError exception.
 ... Return Completion(completion).
EdgeHTML Mode
IteratorClose is not correctly implemented. It behaves as follows:
 7.4.6 IteratorClose(iteratorRecord, completion)
 1. Assert: Type... is Object.
 2. Assert: completion is a Completion Record.
 3. Return Completion(completion).

[bookmark: section_c15d42d611111111b84a8d0318cc3bbc][bookmark: _Toc531070557][ECMA-262/9:2018] Section 7.4.7 AsyncIteratorClose (iteratorRecord, completion)
V0210: Async iteration is not supported
The specification states:
7.4.7 AsyncIteratorClose (iteratorRecord, completion)

 The abstract operation AsyncIteratorClose with arguments iteratorRecord and
 completion is used to notify an async iterator that it should perform any actions it
 would normally perform when it has reached its completed state:
EdgeHTML Mode
Async iteration is not supported.

[bookmark: section_c2abbc1211111111ad474a3dcfe8888e][bookmark: _Toc531070558][ECMA-262/9:2018] Section 9.2.7 AsyncGeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)
V0212: Async Generators are not supported
The specification states:
9.2.7 AsyncGeneratorFunctionCreate (kind, ParameterList, Body, Scope, Strict)

 The abstract operation AsyncGeneratorFunctionCreate requires the arguments: kind
 which is one of (Normal, Method), a parameter list Parse Node specified by
 ParameterList, a body Parse Node specified by Body, a Lexical Environment specified
 by Scope, and a Boolean flag Strict.

 AsyncGeneratorFunctionCreate performs the following steps:

 1. Let functionPrototype be the intrinsic object %AsyncGenerator%.
 2. Let F be ! FunctionAllocate(functionPrototype, Strict, "generator").
 3. Return ! FunctionInitialize(F, kind, ParameterList, Body, Scope).
EdgeHTML Mode
Async Generators are not supported.

[bookmark: section_8d0e292a111111118d1c36aac2006459][bookmark: _Toc531070559][ECMA-262/9:2018] Section 11.8.6 Template Literal Lexical Components
V0040: The escape sequence \0 is treated as a legacy octal escape sequence and a SyntaxError is thrown
The specification states:
11.8.6 Template Literal Lexical Components

 Syntax

 Template ::
 NoSubstitutionTemplate
 TemplateHead

 NoSubstitutionTemplate ::
 ` TemplateCharactersopt `

 TemplateHead ::
 ` TemplateCharactersopt ${

 TemplateSubstitutionTail ::
 TemplateMiddle
 TemplateTail

 TemplateMiddle ::
 } TemplateCharactersopt ${

 TemplateTail ::
 } TemplateCharactersopt `

 TemplateCharacters ::
 TemplateCharacter TemplateCharactersopt

 TemplateCharacter ::
 $ [lookahead ≠ {]
 \ EscapeSequence
 \ NotEscapSequence [Added in 2018 spec]
 LineContinuation
 LineTerminatorSequence
 SourceCharacter but not one of ` or \ or $ or LineTerminator

 ...

 A conforming implementation must not use the extended definition of EscapeSequence
 described in B.1.2 when parsing a TemplateCharacter.

 NOTE TemplateSubstitutionTail is used by the InputElementTemplateTail alternative
 lexical goal.
EdgeHTML Mode
The escape sequence \0 is treated as a legacy octal escape sequence and a SyntaxError is thrown; instead it should be translated into a null character.

[bookmark: section_6613819d11111111a89bb3e50b8fdd23][bookmark: _Toc531070560][ECMA-262/9:2018] Section 11.9.1 Rules of Automatic Semicolon Insertion
V0041: Automatic semicolon insertion is not applied to yield* productions
The specification states:
11.9.1 Rules of Automatic Semicolon Insertion

 In the following rules, “token” means the actual recognized lexical token determined
 using the current lexical goal symbol as described in clause 11.

 There are three basic rules of semicolon insertion:

 ...

 3. When ... a token is encountered that is allowed by some production of the
 grammar, but the production is a restricted production and the token would be
 the first token for a terminal or nonterminal immediately following the
 annotation “[no LineTerminator here]” within the restricted production (and
 therefore such a token is called a restricted token), and the restricted
 token is separated from the previous token by at least one LineTerminator,
 then a semicolon is automatically inserted before the restricted token.
EdgeHTML Mode
Rule 3 is not applied to yield* productions.
 var obj = {
 *g() {
 yield
 * 1
 }
 };
A semicolon should be inserted in the yield* production as follows:
 yield;*1
This would throw a SyntaxError.

[bookmark: section_0ef2b3781111111197703d19198e86a8][bookmark: _Toc531070561][ECMA-262/9:2018] Section 12.4.4.1 Runtime Semantics: Evaluation
V0189: The reference is retrieved twice
The specification states:
12.4.4.1 Runtime Semantics: Evaluation

 UpdateExpression : LeftHandSideExpression ++

 1. Let lhs be the result of evaluating LeftHandSideExpression.
 2. Let oldValue be ? ToNumber(? GetValue(lhs)).
 3. Let newValue be the result of adding the value 1 to oldValue, using the same
 rules as for the + operator (see 12.8.5).
 4. Perform ? PutValue(lhs, newValue).
 5. Return oldValue.
EdgeHTML Mode
Between steps 2 and 3, the following steps are added:
 a. If Type(lhs) is a Reference and if IsUnresolvableReference(_lhs_) is false and IsPropertyReference(_lhs_) is false:
 1. Assert: lhs is a reference to an Environment Record.
 2. Let hs be the result of evaluating an Identifier _id_ whose StringValue is GetReferencedName(lhs) as if _id_ were a LeftHandSideExpression.
 3. ReturnIfAbrupt(lhs);
As a result, the reference is retrieved twice.

[bookmark: section_d5f9fdc91111111196cfcdc2929495f3][bookmark: _Toc531070562][ECMA-262/9:2018] Section 12.4.5.1 Runtime Semantics: Evaluation
V0190: The reference is retrieved twice
The specification states:
12.4.5.1 Runtime Semantics: Evaluation

 UpdateExpression : LeftHandSideExpression --

 1. Let lhs be the result of evaluating LeftHandSideExpression.
 2. Let oldValue be ? ToNumber(GetValue(lhs)).
 3. Let newValue be the result of subtracting the value 1 from oldValue, using
 the same rules as for the - operator (see 12.8.5).
 4. Perform ? PutValue(lhs, newValue).
 5. Return oldValue.
EdgeHTML Mode
Between steps 2 and 3 the following steps are added:
 a. If Type(lhs) is a Reference and if IsUnresolvableReference(_lhs_) is false and IsPropertyReference(_lhs_) is false:
 1. Assert: lhs is a reference to an Environment Record.
 2. Let hs be the result of evaluating an Identifier _id_ whose StringValue is GetReferencedName(lhs) as if _id_ were a LeftHandSideExpression.
 3. ReturnIfAbrupt(lhs);
As a result, the reference is retrieved twice.

[bookmark: section_e2b7d0b111111111a3663bcc6ec4a28e][bookmark: _Toc531070563][ECMA-262/9:2018] Section 12.4.6.1 Runtime Semantics: Evaluation
V0191: The reference is retrieved twice
The specification states:
12.4.6.1 Runtime Semantics: Evaluation

 UpdateExpression : ++ UnaryExpression

 1. Let expr be the result of evaluating UnaryExpression.
 2. Let oldValue be ? ToNumber(? GetValue(expr)).
 3. Let newValue be the result of adding the value 1 to oldValue, using the same
 rules as for the + operator (see 12.8.5).
 4. Perform ? PutValue(expr, newValue).
 5. Return newValue.
EdgeHTML Mode
Between steps 2 and 3 the following steps are added:
 a. If Type(expr) is a Reference and if IsUnresolvableReference(_expr_) is false:
 1. Assert: expr is a reference to an Environment Record.
 2. Let hs be the result of evaluating an Identifier _id_ whose StringValue is GetReferencedName(expr) as if _id_ were a LeftHandSideExpression.
 3. ReturnIfAbrupt(expr);
As a result, the reference is retrieved twice.

[bookmark: section_9fe31a0611111111a566f3d6b8508ae7][bookmark: _Toc531070564][ECMA-262/9:2018] Section 12.4.7.1 Runtime Semantics Evaluation
V0192: The reference is retrieved twice
The specification states:
12.4.7.1 Runtime Semantics: Evaluation

 UpdateExpression : -- UnaryExpression

 1. Let expr be the result of evaluating UnaryExpression.
 2. Let oldValue be ? ToNumber(? GetValue(expr)).
 3. Let newValue be the result of subtracting the value 1 from oldValue, using
 the same rules as for the - operator (see 12.8.5).
 4. Perform ? PutValue(expr, newValue).
 5. Return newValue.
EdgeHTML Mode
Between steps 3 and 4 the following steps are added:
 a. If Type(expr) is Reference and if IsUnresolvableReference(_expr_) is false and IsPropertyReference(_expr_) is false then
 1. Assert: expr is a reference to an Environment Record.
 2. Let expr be the result of evaluating an Identifier _id_ whose StringValue is GetReferencedName(expr) as if _id_ were a LeftHandSideExpression.
 3. ReturnIfAbrupt(expr);
As a result, the reference is retrieved twice.

[bookmark: section_0f6f283d11111111a8c162cb75bfef9b][bookmark: _Toc531070565][ECMA-262/9:2018] Section 12.10.4 Runtime Semantics: InstanceofOperator (V, target)
V0193: The abstract operation InstanceofOperator(O, C) is not implemented
The specification states:
12.10.4 Runtime Semantics: InstanceofOperator (V, target)

 The abstract operation InstanceofOperator(V, target) implements the generic algorithm
 for determining if ECMAScript value V is an instance of object target either by
 consulting target's @@hasinstance method or, if absent, determining whether the value
 of target's prototype property is present in V's prototype chain. This abstract
 operation performs the following steps:

 1. If Type(target) is not Object, throw a TypeError exception.
 2. Let instOfHandler be ? GetMethod(target, @@hasInstance).
 3. If instOfHandler is not undefined, then
 a. Return ToBoolean(? Call(instOfHandler, target, « V »)).
 4. If IsCallable(target) is false, throw a TypeError exception.
 5. Return ? OrdinaryHasInstance(target, V).
EdgeHTML Mode
The abstract operation InstanceofOperator(O, C) is not implemented.

[bookmark: section_7af872e011111111a76a6982f9d83f5f][bookmark: _Toc531070566][ECMA-262/9:2018] Section 12.15.4 Runtime Semantics: Evaluation
V0194: After an assignment, the name of the function is the empty string
The specification states:
12.15.4 Runtime Semantics: Evaluation

 AssignmentExpression : LeftHandSideExpression = AssignmentExpression

 1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral,
 then
 a. Let lref be the result of evaluating LeftHandSideExpression.
 b. ReturnIfAbrupt(lref).
 c. Let rref be the result of evaluating AssignmentExpression.
 d. Let rval be ? GetValue(rref).
 e. If IsAnonymousFunctionDefinition(AssignmentExpression) and
 IsIdentifierRef of LeftHandSideExpression are both true, then
 i. Let hasNameProperty be ? HasOwnProperty(rval, "name").
 ii. If hasNameProperty is false, perform SetFunctionName(rval,
 GetReferencedName(lref)).
EdgeHTML Mode
After the following assignment:
 var f = function () {}
the name of the function held in f is the empty string.

V0195: The reference is retrieved twice
The specification states:
12.15.4 Runtime Semantics: Evaluation

 AssignmentExpression : LeftHandSideExpression = AssignmentExpression

 1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral,
 then
 a. Let lref be the result of evaluating LeftHandSideExpression.
 b. ReturnIfAbrupt(lref).
 c. Let rref be the result of evaluating AssignmentExpression.
 d. Let rval be ? GetValue(rref).
 e. If IsAnonymousFunctionDefinition(AssignmentExpression) and
 IsIdentifierRef of LeftHandSideExpression are both true, then
 i. Let hasNameProperty be ? HasOwnProperty(rval, "name").
 ii. If hasNameProperty is false, perform SetFunctionName(rval,
 GetReferencedName(lref)).
 f. Perform ? PutValue(lref, rval).
 g. Return rval.
 ...

 AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

 1. Let lref be the result of evaluating LeftHandSideExpression.
 2. Let lval be ? GetValue(lref).
 3. Let rref be the result of evaluating AssignmentExpression.
 4. Let rval be ? GetValue(rref).
 5. Let op be the @ where AssignmentOperator is @=
 6. Let r be the result of applying op to lval and rval as if evaluating the
 expression lval op rval.
 7. Perform ? PutValue(lref, r).
 8. Return r.
EdgeHTML Mode
In the algorithm for
 AssignmentExpression : LeftHandSideExpression = AssignmentExpression
the following steps are added before step 1f:
 i. Type(lref) is Reference and if IsUnresolvableReference(_lref_) is false and IsPropertyReference(_lref_) is false then
 1. Assert: lref is a reference to an Environment Record.
 2. Let lref be the result of evaluating an Identifier _id_ whose StringValue is GetReferencedName(lref) as if _id_ were a LeftHandSidelrefession.
 3. ReturnIfAbrupt(lref);
As a result, the reference is retrieved twice.
In the algorithm for
 Assignmentlrefession : LeftHandSidelrefession AssignmentOperator Assignmentlrefession
the following steps are added between steps 4 and 5:
 a. Type(lref) is Reference and if IsUnresolvableReference(_lref_) is false and IsPropertyReference(_lref_) is false then
 i. Assert: lref is a reference to an Environment Record.
 ii. Let lref be the result of evaluating an Identifier _id_ whose StringValue is GetReferencedName(lref) as if _id_ were a LeftHandSidelrefession.
 iii. ReturnIfAbrupt(lref);
As a result, the reference is retrieved twice.

[bookmark: section_e1bf8012111111118cd83a9a9d2dd8b4][bookmark: _Toc531070567][ECMA-262/9:2018] Section 13 ECMAScript Language: Statements and Declarations
V0056: HoistableDeclaration is treated as a production of Statement, not Declaration
The specification states:
13 ECMAScript Language: Statements and Declarations

 Statement[Yield, ... Return] :
 BlockStatement[?Yield, ... ?Return]
 ...
 DebuggerStatement

 Declaration[Yield ...] :
 HoistableDeclaration[?Yield ,,,]
 ClassDeclaration[?Yield ...]
 LexicalDeclaration[...In, ?Yield ...]

 HoistableDeclaration[Yield, ... Default] :
 FunctionDeclaration[?Yield, ... ?Default]
 GeneratorDeclaration[?Yield, ... ?Default]
EdgeHTML Mode
HoistableDeclaration is treated as a production of Statement, not Declaration.
 Statement[Yield, ... Return] :
 BlockStatement[?Yield, ... ?Return]
 ...
 DebuggerStatement
 HoistableDeclaration[?Yield ...]
 Declaration[Yield ...] :
 ClassDeclaration[?Yield ...]
 LexicalDeclaration[...In, ?Yield ...]
 HoistableDeclaration[Yield, ... Default] :
 FunctionDeclaration[?Yield, ... ?Default]
 GeneratorDeclaration[?Yield, ... ?Default]

[bookmark: section_c5be2201111111118762a272747210f6][bookmark: _Toc531070568][ECMA-262/9:2018] Section 13.2.1 Static Semantics: Early Errors
V0057: No error is issued if an element of LexicallyDeclaredNames also occurs in VarDeclaredNames
The specification states:
13.2.1 Static Semantics: Early Errors

 Block : { StatementList }

 • It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains
 any duplicate entries.
 • It is a Syntax Error if any element of the LexicallyDeclaredNames of
 StatementList also occurs in the VarDeclaredNames of StatementList.
EdgeHTML Mode
No error is issued if an element of LexicallyDeclaredNames also occurs in VarDeclaredNames. For example:
 {
 let x;
 var x; // should be a syntax error but is not
 }

V0058: Functions and generator functions are allowed to have duplicates in LexicallyDeclaredNames
The specification states:
13.2.1 Static Semantics: Early Errors

 Block : { StatementList }

 • It is a Syntax Error if the LexicallyDeclaredNames of StatementList contains
 any duplicate entries.
 • It is a Syntax Error if any element of the LexicallyDeclaredNames of
 StatementList also occurs in the VarDeclaredNames of StatementList.
EdgeHTML Mode
Functions and generator functions are allowed to have duplicates in LexicallyDeclaredNames.

[bookmark: section_2fdc69b711111111b69335cde363fa9e][bookmark: _Toc531070569][ECMA-262/9:2018] Section 13.7.4.1 Static Semantics: Early Errors
V0061: It is not a Syntax Error for the BoundNames of LexicalDeclaration to contain let or const
The specification states:
13.7.4.1 Static Semantics: Early Errors

 IterationStatement : for (LexicalDeclaration Expression; Expression) Statement

 • It is a Syntax Error if any element of the BoundNames of LexicalDeclaration
 also occurs in the VarDeclaredNames of Statement.
EdgeHTML Mode
It is not a Syntax Error for the BoundNames of LexicalDeclaration to contain let or const.

[bookmark: section_64c3478511111111849fa303f847396b][bookmark: _Toc531070570][ECMA-262/9:2018] Section 13.7.5.1 Static Semantics: Early Errors
V0129: It is not a Syntax Error if an element of the BoundNames of ForDeclaration also occurs in the VarDeclaredNames of Statement
The specification states:
13.7.5.1 Static Semantics: Early Errors
 ...
 IterationStatement :
 for (ForDeclaration in Expression) Statement
 for (ForDeclaration of AssignmentExpression) Statement
 ...

 • It is a Syntax Error if the BoundNames of ForDeclaration contains "let".
 • It is a Syntax Error if any element of the BoundNames of ForDeclaration also
 occurs in the VarDeclaredNames of Statement.
 • It is a Syntax Error if the BoundNames of ForDeclaration contains any duplicate
 entries.
EdgeHTML Mode
It is not a Syntax Error if an element of the BoundNames of ForDeclaration also occurs in the VarDeclaredNames of Statement.

[bookmark: section_319ac70d111111118b9a42f1610d138d][bookmark: _Toc531070571][ECMA-262/9:2018] Section 13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation (TDZnames, expr, iterationKind)
V0208: ForIn/OfHeadEvaluation does not return an AbruptCompletion when exprValue.[[value]] is null or undefined
The specification states:
13.7.5.12 Runtime Semantics: ForIn/OfHeadEvaluation (TDZnames, expr, iterationKind)

 The abstract operation ForIn/OfHeadEvaluation is called with arguments TDZnames,
 expr, and iterationKind. The value of iterationKind is either enumerate, iterate, or
 async-iterate [prior to 2018, "enumerate or iterate"].
 ...
 6. If iterationKind is enumerate, then
 a. If exprValue [prior to 2018, "exprValue.[[value]]"] is undefined or null,
 then
 i. Return Completion{[[type]]: break, [[value]]: empty, [[target]]:
 empty}.
 b. Let obj be ! ToObject(exprValue).
 c. Return ? EnumerateObjectProperties(obj).
 7. Else,
 a. Assert: iterationKind is iterate.
 ...
 ... Return ? GetIterator(exprValue, ...).
EdgeHTML Mode
Logic in the If branch is also executed in the Else branch:
 7. Else,
 -. If exprValue [prior to 2018, "exprValue.[[value]]"] is undefined or null, then
 i. Return Completion{[[type]]: break, [[value]]: empty, [[target]]: empty}.
 a. Assert: iterationKind is iterate.
 ... Return ? GetIterator(exprValue).
Therefore ForIn/OfHeadEvaluation does not return an abrupt completion for iterationKind is iterate when exprValue {prior to 2018, exprvalue.[[value]] is null or undefined. For example, the following statements do not throw errors:
 for (let x of null) {}
 for (let x of undefined) {}

[bookmark: section_bffb941e11111111bca4f966352d34d3][bookmark: _Toc531070572][ECMA-262/9:2018] Section 13.13 Labelled Statements
V0062: The LabelledItem production replaces FunctionDeclaration with Declaration
The specification states:
13.13 Labelled Statements

 Syntax

 LabelledStatement[Yield, ... Return] :
 LabelIdentifier[?Yield ...] : LabelledItem[?Yield, ... ?Return]

 LabelledItem[Yield, ... Return] :
 Statement[?Yield, ... ?Return]
 FunctionDeclaration[?Yield ...]
EdgeHTML Mode
The LabelledItem production replaces FunctionDeclaration with Declaration.
 LabelledItem[Yield, ... Return] :
 Statement[?Yield, ... ?Return]
 Declaration[?Yield ...]

[bookmark: section_eae8ff6911111111ab2c4a55f3229945][bookmark: _Toc531070573][ECMA-262/9:2018] Section 14.1.2 Static Semantics: Early Errors
V0063: The LexicallyDeclaredNames of FunctionStatementList may have duplicate function and generator function entries
The specification states:
14.1.2 Static Semantics: Early Errors
 ...
 FunctionBody : FunctionStatementList

 • It is a Syntax Error if the LexicallyDeclaredNames of FunctionStatementList
 contains any duplicate entries.
 • It is a Syntax Error if any element of the LexicallyDeclaredNames of
 FunctionStatementList also occurs in the VarDeclaredNames of
 FunctionStatementList.
 • It is a Syntax Error if ContainsDuplicateLabels of FunctionStatementList with
 argument « » is true.
 • It is a Syntax Error if ContainsUndefinedBreakTarget of FunctionStatementList
 with argument « » is true.
 • It is a Syntax Error if ContainsUndefinedContinueTarget of
 FunctionStatementList with arguments « » and « » is true.
EdgeHTML Mode
The LexicallyDeclaredNames of FunctionStatementList may have duplicate function and generator function entries.

[bookmark: section_7fa4d48511111111b130c3ab207fc22b][bookmark: _Toc531070574][ECMA-262/9:2018] Section 14.3.7 Runtime Semantics: DefineMethod
V0066: Object literal methods can successfully be used as the target of new expressions
The specification states:
14.3.7 Runtime Semantics: DefineMethod

 With parameters object and optional parameter functionPrototype.

 MethodDefinition : PropertyName (UniqueFormalParameters) { FunctionBody }

 1. Let propKey be the result of evaluating PropertyName.
 2. ReturnIfAbrupt(propKey).
 3. If the function code for this MethodDefinition is strict mode code, let
 strict be true. Otherwise let strict be false.
 4. Let scope be the running execution context's LexicalEnvironment.
 5. If functionPrototype is present as a parameter, then
 a. Let kind be Normal.
 b. Let prototype be functionPrototype.
 6. Else,
 a. Let kind be Method.
 b. Let prototype be functionPrototype [prior to 2018, "the intrinsic object
 %FunctionPrototype%"].
 7. Let closure be FunctionCreate(kind, UniqueFormalParameters, FunctionBody,
 scope, strict, prototype).
 8. Perform MakeMethod(closure, object).
 9. Return the Record{[[Key]]: propKey, [[Closure]]: closure}.
EdgeHTML Mode
Object literal methods are created with a [[Construct]] slot, contrary to DefineMethod. Therefore the methods can successfully be used as the target of new expressions. In the following example, the new expression should throw a TypeError, but doesn't.
 var obj = { meth() { } };
 new obj.meth();

V0067: Methods defined in object literals are created with their own property named prototype
The specification states:
14.3.7 Runtime Semantics: DefineMethod

 With parameters object and optional parameter functionPrototype.

 MethodDefinition : PropertyName (UniqueFormalParameters) { FunctionBody }

 1. Let propKey be the result of evaluating PropertyName.
 2. ReturnIfAbrupt(propKey).
 3. If the function code for this MethodDefinition is strict mode code, let
 strict be true. Otherwise let strict be false.
 4. Let scope be the running execution context's LexicalEnvironment.
 5. If functionPrototype is present as a parameter, then
 a. Let kind be Normal.
 b. Let prototype be functionPrototype.
 6. Else,
 a. Let kind be Method.
 b. Let prototype be the intrinsic object %FunctionPrototype%.
 7. Let closure be FunctionCreate(kind, UniqueFormalParameters, FunctionBody,
 scope, strict, prototype).
 8. Perform MakeMethod(closure, object).
 9. Return the Record{[[Key]]: propKey, [[Closure]]: closure}.
EdgeHTML Mode
Methods defined in object literals are created with their own property named prototype, contrary to DefineMethod. In the following example, false should be logged, but instead true is.
 var obj = { method() { } };
 console.log(Object.hasOwnProperty(obj.method, 'property'));

[bookmark: section_920103fe11111111ab97771b2e47c09d][bookmark: _Toc531070575][ECMA-262/9:2018] Section 14.5 Async Generator Function Definitions
V0211: Async Generators are not supported
The specification states:
14.5 Async Generator Function Definitions
EdgeHTML Mode
Async Generators are not supported.

[bookmark: section_f3025b84111111119c2aba25623f1403][bookmark: _Toc531070576][ECMA-262/9:2018] Section 14.6.13 Runtime Semantics: ClassDefinitionEvaluation
V0021: ClassDefinitionEvaluation uses the lexical environment of the running execution context
The specification states:
... Runtime Semantics: ClassDefinitionEvaluation

 With parameter className.

 ClassTail : ClassHeritage { ClassBody }

 1. Let lex be the LexicalEnvironment of the running execution context.
 2. Let classScope be NewDeclarativeEnvironment(lex).
 3. Let classScopeEnvRec be classScope’s EnvironmentRecord.
 4. If className is not undefined, then
 a. Perform classScopeEnvRec.CreateImmutableBinding(className, true).
 ...
 23. If className is not undefined, then
 a. Perform classScopeEnvRec.InitializeBinding(className, F).
EdgeHTML Mode
Step 2 is omitted. As a result, ClassDefinitionEvaluation uses the lexical environment of the running execution context.

[bookmark: section_c2baf25e11111111bc92587f009737b0][bookmark: _Toc531070577][ECMA-262/9:2018] Section 15.1.1 Static Semantics: Early Errors
V0069: Duplicate function and generator function entries are allowed in LexicallyDeclaredNames of ScriptBody
The specification states:
15.1.1 Static Semantics: Early Errors

 Script : ScriptBody

 • It is a Syntax Error if the LexicallyDeclaredNames of ScriptBody contains any
 duplicate entries.
 • It is a Syntax Error if any element of the LexicallyDeclaredNames of ScriptBody
 also occurs in the VarDeclaredNames of ScriptBody.
EdgeHTML Mode
Duplicate function and generator function entries are allowed in LexicallyDeclaredNames of ScriptBody.

[bookmark: section_0eb8a96111111111b159ce9c364557e7][bookmark: _Toc531070578][ECMA-262/9:2018] Section 16.2 Forbidden Extensions
V0025: Functions created using the bind method are given caller and arguments restricted own properties
The specification states:
16.2 Forbidden Extensions

 An implementation must not extend this specification in the following ways:

 • ECMAScript function objects defined using syntactic constructors in strict mode
 code must not be created with own properties named "caller" or "arguments". Such
 own properties also must not be created for function objects defined using an
 ArrowFunction, MethodDefinition, GeneratorDeclaration, GeneratorExpression,
 AsyncGeneratorDeclaration [2018 and later], AsyncGeneratorExpression [2018 and
 later], ClassDeclaration, ClassExpression, AsyncFunctionDeclaration,
 AsyncFunctionExpression, or AsyncArrowFunction regardless of whether the
 definition is contained in strict mode code. Built-in functions, strict functions
 created using the Function constructor, generator functions created using the
 Generator constructor, async functions created using the AsyncFunction
 constructor, and functions created using the bind method also must not be created
 with such own properties.
EdgeHTML Mode
Functions created using the bind method are given caller and arguments restricted own properties.

[bookmark: section_f1d0404011111111baf2cf6a161624f3][bookmark: _Toc531070579][ECMA-262/9:2018] Section 18.4.1 Atomics
V0219: The Atomics object is not supported
The specification states:
18.4.1 Atomics

 See 24.4.

24.4 The Atomics Object

 The Atomics object:

 • is the intrinsic object %Atomics%.
 ...

 ... When used with discipline, the Atomics functions allow multi-agent programs that
 communicate through shared memory to execute in a well-understood order even on
 parallel CPUs. ...
EdgeHTML Mode
The Atomics object is not supported.

[bookmark: section_5ba9262e11111111b4f956dbc4a595e8][bookmark: _Toc531070580][ECMA-262/9:2018] Section 19.1.2.20 Object.setPrototypeOf (O, proto)
V0196: Object.setPrototypeOf throws an error immediately if parameter O is not an object
The specification states:
... Object.setPrototypeOf (O, proto)

 When the setPrototypeOf function is called with arguments O and proto, the following
 steps are taken:

 1. Let O be ? RequireObjectCoercible(O).
 2. If Type(proto) is neither Object nor Null, throw a TypeError exception.
 3. If Type(O) is not Object, return O.
 4. Let status be ? O.[[SetPrototypeOf]](proto).
 5. If status is false, throw a TypeError exception.
 6. Return O.
EdgeHTML Mode
ToObject(O) is done instead of RequireObjectCoercible(O) in step 1. As a result, Object.setPrototypeOf throws an error immediately if parameter O is not an object.

[bookmark: section_cfdb6efb1111111193d4d2a9f9d20b9f][bookmark: _Toc531070581][ECMA-262/9:2018] Section 19.1.3.2 Object.prototype.hasOwnProperty (V)
V0197: An error is thrown if the argument is a symbol
The specification states:
19.1.3.2 Object.prototype.hasOwnProperty (V)

 When the hasOwnProperty method is called with argument V, the following steps are
 taken:

 1. Let P be ? ToPropertyKey(V).
 2. Let O ? be ToObject(this value).
 3. Return ? HasOwnProperty(O, P).
EdgeHTML Mode
In step 1, ToString is invoked instead of ToPropertyKey. Because of this, an error is thrown if V is a symbol.

[bookmark: section_b6ce7da711111111b4b8b706ed2c652c][bookmark: _Toc531070582][ECMA-262/9:2018] Section 19.1.3.5 Object.prototype.toLocaleString ([reserved1 [, reserved2]])
V0198: Object.prototype.toLocaleString passes ToObject(this) to the toString method instead of this
The specification states:
19.1.3.5 Object.prototype.toLocaleString ([reserved1 [, reserved2]])

 When the toLocaleString method is called, the following steps are taken:

 1. Let O be the this value.
 2. Return ? Invoke(O, "toString").
EdgeHTML Mode
Object.prototype.toLocaleString passes ToObject(this) to the toString method instead of this. These are the steps:
 1. Let O be the this value.
 2. Let obj be ? ToObject(O).
 3. Return ToString(obj).

[bookmark: section_8225ec5d11111111a5ba1e44e6b55b02][bookmark: _Toc531070583][ECMA-262/9:2018] Section 19.1.3.6 Object.prototype.toString ()
V0199: @@toStringTag is not implemented
The specification states:
19.1.3.6 Object.prototype.toString ()

 When the toString method is called, the following steps are taken:

 1. ...
 ...
 15. Let tag be ? Get (O, @@toStringTag).
EdgeHTML Mode
@@toStringTag is not implemented.

[bookmark: section_3f4170a0111111119f7f7dcdfc37cc43][bookmark: _Toc531070584][ECMA-262/9:2018] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args)
V0200: The bound function name accessor calls the target function's counterpart
The specification states:
19.2.3.2 Function.prototype.bind (thisArg , ...args)

 When the bind method is called with argument thisArg and zero or more args, it
 performs the following steps:

 1. Let Target be the this value.
 ...
 9. Let targetName be ? Get(Target, "name").
 10. If Type(targetName) is not String, let targetName be the empty string.
 11. Perform SetFunctionName(F, targetName, "bound").
 12. Return F.
EdgeHTML Mode
Steps 9 to 11 are replaced by:
 9. Let getName(Target) be a new dynamic function that does following:
 a. Let targetName be ? Get(Target, "name").
 b. Return "bound"+targetName.
 10. Set (F, "name", getName).
Because of this, the bound function name accessor calls the target function's counterpart. Note that steps 10 and 11 are deleted.

[bookmark: section_37c341bc11111111a8323287c5e7dc2c][bookmark: _Toc531070585][ECMA-262/9:2018] Section 19.2.3.6 Function.prototype [@@hasInstance] (V)
V0209: Calling @@hasInstance has no effect
The specification states:
19.2.3.6 Function.prototype[@@hasInstance] (V)

 When the @@hasInstance method of an object F is called with value V, the following
 steps are taken:

 1. Let F be the this value.
 2. Return ? OrdinaryHasInstance(F, V).

 The value of the name property of this function is "[Symbol.hasInstance]".

 This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
 [[Configurable]]: false }.
 ...
 This property is non-writable and non-configurable to prevent tampering that could be
 used to globally expose the target function of a bound function.
EdgeHTML Mode
Calling @@hasInstance has no effect.

[bookmark: section_5ac928c0111111118c6a1a62c6f902c3][bookmark: _Toc531070586][ECMA-262/9:2018] Section 19.2.4.1 length
V0074: The [[writable]] attribute of the length property cannot be set to true, regardless of the setting of [[configurable]]
The specification states:
19.2.4.1 length

 The value of the length property is an integer that indicates the typical number of
 arguments expected by the function. However, the language permits the function to be
 invoked with some other number of arguments. The behaviour of a function when invoked
 on a number of arguments other than the number specified by its length property
 depends on the function. This property has the attributes { [[Writable]]: false,
 [[Enumerable]]: false, [[Configurable]]: true }.
EdgeHTML Mode
The [[writable]] attribute of the length property cannot be set to true, regardless of the setting of [[configurable]]. No error is thrown on an attempt to set it true.

[bookmark: section_53d006751111111190c7f3727052fc1f][bookmark: _Toc531070587][ECMA-262/9:2018] Section 19.4.2 Properties of the Symbol Constructor
V0161: The hasInstance, isConcatSpreadable, toPrimitive, and toStringTag properties of the Symbol constructor are not implemented.
The specification states:
19.4.2 Properties of the Symbol Constructor

 The Symbol constructor:

 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %FunctionPrototype%.
 • has the following properties:
EdgeHTML Mode
The hasInstance, isConcatSpreadable, toPrimitive, and toStringTag properties of the Symbol constructor are not implemented.

[bookmark: section_90993fd5111111119e69dce270ce3808][bookmark: _Toc531070588][ECMA-262/9:2018] Section 19.4.2.1 Symbol.asyncIterator
V0215: Symbol.asyncInterator is not supported
The specification states:
19.4.2.1 Symbol.asyncIterator

 The initial value of Symbol.asyncIterator is the well known symbol @@asyncIterator
 (Table 1).

 This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
 [[Configurable]]: false }.
EdgeHTML Mode
Symbol.asyncInterator is not supported.

[bookmark: section_ff07cf621111111195bcf84f6f8c8893][bookmark: _Toc531070589][ECMA-262/9:2018] Section 19.4.3.4 Symbol.prototype [@@toPrimitive] (hint)
V0178: Symbol.prototype[@@toPrimitive] is not implemented because @@toPrimitive is not implemented
The specification states:
19.4.3.4 Symbol.prototype [@@toPrimitive] (hint)

 This function is called by ECMAScript language operators to convert a Symbol object
 to a primitive value. The allowed values for hint are "default", "number",
 and "string".

 When the @@toPrimitive method is called with argument hint, the following steps are
 taken:
EdgeHTML Mode
Symbol.prototype[@@toPrimitive] is not implemented because @@toPrimitive is not implemented.

[bookmark: section_707553c611111111a7487e66a744259f][bookmark: _Toc531070590][ECMA-262/9:2018] Section 19.4.3.5 Symbol.prototype [@@toStringTag]
V0179: Symbol.prototype[@@toStringTag] is not implemented because the @@toStringTag feature is not implemented
The specification states:
19.4.3.5 Symbol.prototype [@@toStringTag]

 The initial value of the @@toStringTag property is the String value "Symbol".

 This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
 [[Configurable]]: true }.
EdgeHTML Mode
Symbol.prototype[@@toStringTag] is not implemented because the @@toStringTag feature is not implemented.

[bookmark: section_ae769033111111119166e47556324d36][bookmark: _Toc531070591][ECMA-262/9:2018] Section 19.5.3 Properties of the Error Prototype Object
V0182: The error prototype object is the intrinsic object %Error%
The specification states:
19.5.3 Properties of the Error Prototype Object

 The Error prototype object:

 • is the intrinsic object %ErrorPrototype%.
 • is an ordinary object.
 • is not an Error instance and does not have an [[ErrorData]] internal slot.
 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %ObjectPrototype%.
EdgeHTML Mode
The Error prototype object is the intrinsic object %Error%. It is an Error object. It is not an Error instance and does have an [[ErrorData]] internal slot.

[bookmark: section_c954ee1f11111111863fed64b6661ed9][bookmark: _Toc531070592][ECMA-262/9:2018] Section 20.3.1.14 TimeClip (time)
V0201: TimeClip does not convert negative zero to positive zero
The specification states:
... TimeClip (time)

 The abstract operation TimeClip calculates a number of milliseconds from its
 argument, which must be an ECMAScript Number value. This operator functions as
 follows:

 1. If time is not finite, return NaN.
 2. If abs(time) > 8.64 × 10^15, return NaN.
 3. Let clippedTime be ... ToInteger(time).
 4. If clippedTime is -0, set clippedTime to +0.
 5. Return clippedTime.
EdgeHTML Mode
TimeClip does not convert negative zero to positive zero (step 4).

[bookmark: section_c41b37a811111111b17da46a52e8f870][bookmark: _Toc531070593][ECMA-262/9:2018] Section 20.3.1.15 Date Time String Format
V0125: A date-time without a time zone offset is interpreted incorrectly
The specification states:
... Date Time String Format

 ECMAScript defines a string interchange format for date-times based upon a
 simplification of the ISO 8601 Extended Format. The format is as follows:
 YYYY-MM-DDTHH:mm:ss.sssZ

 Where the fields are as follows:

 YYYY is the decimal digits of the year 0000 to 9999 in the [proleptic] Gregorian
 calendar.
 ...
 Z is the time zone offset specified as "Z" (for UTC) or either "+" or "-"
 followed by a time expression HH:mm
EdgeHTML Mode
When the date-time string does not include a time zone offset, the time is taken, incorrectly, to be UTC, not local time. For example, if the date-time string is "2015-10-01", it is taken to mean:
 Wed Sep 30 2015 17:00:00 GMT-0700 (Pacific Daylight Time)
According to the specification, it should be taken as:
 Thu Oct 01 2015 00:00:00 GMT-0700 (Pacific Daylight Time)

[bookmark: section_b0c35396111111118999a6061e4347e4][bookmark: _Toc531070594][ECMA-262/9:2018] Section 20.3.4 Properties of the Date Prototype Object
V0183: The Date prototype object is a Date instance and has a [[DateValue]] internal slot
The specification states:
20.3.4 Properties of the Date Prototype Object

 The Date prototype object:

 • is the intrinsic object %DatePrototype%.
 • is itself an ordinary object.
 • is not a Date instance and does not have a [[DateValue]] internal slot.
 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %ObjectPrototype%.
EdgeHTML Mode
The Date prototype object is a Date instance and has a [[DateValue]] internal slot.

[bookmark: section_d3c298c51111111189cfe8e42efac801][bookmark: _Toc531070595][ECMA-262/9:2018] Section 21.1.3.24 String.prototype.toLowerCase ()
V0139: Results are derived according to the mappings in UnicodeData.txt, but not those in SpecialCasings.txt
The specification states:
... String.prototype.toLowerCase ()

 This function interprets a String value as a sequence of UTF-16 encoded code points,
 as described in 6.1.4. The following steps are taken:
 ...

 The result must be derived according to the locale-insensitive case mappings in the
 Unicode Character Database (this explicitly includes not only the UnicodeData.txt
 file, but also all locale-insensitive mappings in the SpecialCasings.txt file that
 accompanies it).
EdgeHTML Mode
Results are derived according to the mappings in UnicodeData.txt, but not those in SpecialCasings.txt.

V0140: Only characters in the Basic Multilingual Plane are converted to lower case
The specification states:
21.1.3.24 String.prototype.toLowerCase ()

 This function interprets a String value as a sequence of UTF-16 encoded code points,
 as described in 6.1.4. The following steps are taken:

 1. Let O be ? RequireObjectCoercible(this value).
 2. Let S be ? ToString(O).
 3. Let cpList be a List containing in order the code points as defined in 6.1.4
 of S, starting at the first element of S.
 4. Let cuList be a List where the elements are the result of toLowercase(cplist),
 according to the Unicode Default Case Conversion algorithm.
 5. Let L be the String value whose elements are the UTF16Encoding of the code
 points of cuList.
 6. Return L.
EdgeHTML Mode
Only those characters in the Basic Multilingual Plane (values no greater than 0xFFFF) are converted to lower case. Others are left unchanged.

[bookmark: section_bd35964d11111111807050a1ba5cd168][bookmark: _Toc531070596][ECMA-262/9:2018] Section 21.1.3.26 String.prototype.toUpperCase ()
V0185: Only characters in the Basic Multilingual Plane are converted to uppercase
The specification states:
... String.prototype.toUpperCase ()

 This function interprets a String value as a sequence of UTF-16 encoded code points,
 as described in 6.1.4.

 This function behaves in exactly the same way as String.prototype.toLowerCase, except
 that the String is mapped using the toUppercase algorithm of the Unicode Default Case
 Conversion.
EdgeHTML Mode
Only those characters in the Basic Multilingual Plane (values no greater than 0xFFFF) are converted to uppercase. Others are left unchanged.

[bookmark: section_faa15e6b111111118ad496ac9396b4bc][bookmark: _Toc531070597][ECMA-262/9:2018] Section 21.2.1 Patterns
V0078: If the contents of the braces in \u{...} is not a hexadecimal number, \u{...} is treated as a regular string
The specification states:
21.2.1 Patterns

 The RegExp constructor applies the following grammar to the input pattern String. An
 error occurs if the grammar cannot interpret the String as an expansion of Pattern.

 Syntax
 ...
 RegExpUnicodeEscapeSequence[U] ::
 [+U] u LeadSurrogate \u TrailSurrogate
 [+U] u LeadSurrogate
 [+U] u TrailSurrogate
 [+U] u NonSurrogate
 [~U] u Hex4Digits
 [+U] u{ HexDigits }
EdgeHTML Mode
If the contents of the braces in \u{...} is not a hexadecimal number, \u{...} is treated as a regular string, rather than a Unicode code point. For example, the following returns true but should throw a SyntaxError exception:
 /\u{pp}/u.exec('\\u{pp}')

[bookmark: section_de24e52711111111a3ade268996c71b9][bookmark: _Toc531070598][ECMA-262/9:2018] Section 21.2.2.10 CharacterEscape
V0175: Characters other than those matched by ControlLetter (non-alphabetic characters) are allowed
The specification states:
21.2.2.10 CharacterEscape

 The CharacterEscape productions evaluate as follows:

 CharacterEscape ::
 ControlEscape
 c ControlLetter
 0 [lookahead ∉ DecimalDigit]
 HexEscapeSequence
 RegExpUnicodeEscapeSequence
 IdentityEscape

 1. Let cv be the CharacterValue of this CharacterEscape.
 2. Return the character whose character value is cv.
EdgeHTML Mode
Characters other than those matched by ControlLetter (non-alphabetic characters) are allowed.

[bookmark: section_cae2267b11111111b27adedbbd92e3b9][bookmark: _Toc531070599][ECMA-262/9:2018] Section 21.2.5 Properties of the RegExp Prototype Object
V0165: The RegExp prototype object is the intrinsic object %RegExp% and is not an ordinary object
The specification states:
21.2.5 Properties of the RegExp Prototype Object

 The RegExp prototype object:

 • is the intrinsic object %RegExpPrototype%.
 • is an ordinary object.
 • is not a RegExp instance and does not have a [[RegExpMatcher]] internal slot or
 any of the other internal slots of RegExp instance objects.
 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %ObjectPrototype%.

 Note The RegExp prototype object does not have a valueOf property of its own;
 however, it inherits the valueOf property from the Object prototype object.
EdgeHTML Mode
The RegExp prototype object is the intrinsic object %RegExp% and is not an ordinary object. It is a RegExp instance with a [[RegExpMatcher]] internal slot and all other internal slots of RegExp instance objects.

V0081: The RegExp prototype object is a RegExp object
The specification states:
21.2.5 Properties of the RegExp Prototype Object

 The RegExp prototype object:

 • is the intrinsic object %RegExpPrototype%.
 • is an ordinary object.
 • is not a RegExp instance and does not have a [[RegExpMatcher]] internal slot or
 any of the other internal slots of RegExp instance objects.
 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %ObjectPrototype%.

 Note The RegExp prototype object does not have a valueOf property of its own;
 however, it inherits the valueOf property from the Object prototype object.
EdgeHTML Mode
The RegExp prototype object is a RegExp object, and its [[Class]] is RegExp. The value of the [[Prototype]] internal property is the standard built-in Object prototype object.
The initial values of the RegExp prototype object’s data properties are set as if the object were created by the expression new RegExp() where RegExp is the standard built-in constructor with that name.

[bookmark: section_d788111b11111111b32f75538dafc3a7][bookmark: _Toc531070600][ECMA-262/9:2018] Section 21.2.5.2.3 AdvanceStringIndex (S, index, unicode)
V0173: AdvanceStringIndex advances the index by 1, not 2, when the unicode flag is specified
The specification states:
21.2.5.2.3 AdvanceStringIndex (S, index, unicode)

 The abstract operation AdvanceStringIndex with arguments S, index, and unicode
 performs the following steps:

 1. Assert: Type(S) is String.
 2. Assert: index is an integer such that 0≤index≤2^53-1.
 3. Assert: Type(unicode) is Boolean.
 4. If unicode is false, return index+1.
 5. Let length be the number of code units in S.
 6. If index+1 ≥ length, return index+1.
 7. Let first be the code unit value at index index in S.
 8. If first < 0xD800 or first > 0xDBFF, return index+1.
 9. Let second be the numeric value of the code unit ["code unit value" prior to
 2018] at index index+1 in S.
 10. If second < 0xDC00 or second > 0xDFFF, return index+1.
 11. Return index+2.
EdgeHTML Mode
AdvanceStringIndex advances the index by 1, not 2 when the unicode flag is specified. For example, the following should hold:
 /\udf06/u.exec('\ud834\udf06') == null
Instead exec returns \udf06; that is:
 /\udf06/u.exec('\ud834\udf06') == '\udf06'

[bookmark: section_6eac823f11111111adbbe0cd52208102][bookmark: _Toc531070601][ECMA-262/9:2018] Section 21.2.5.3 get RegExp.prototype.dotAll
V0220: The RegExp.prototype.dotAll property is not supported
The specification states:
21.2.5.3 get RegExp.prototype.dotAll

 RegExp.prototype.dotAll is an accessor property whose set accessor function is
 undefined. ...
EdgeHTML Mode
The RegExp.prototype.dotAll property is not supported.

[bookmark: section_481a43b91111111197d71fe244ff4c9f][bookmark: _Toc531070602][ECMA-262/9:2018] Section 21.2.6.1 lastIndex
V0082: The [[Writable]] attribute of the lastIndex property cannot be changed from true to false
The specification states:
21.2.6.1 lastIndex

 The value of the lastIndex property specifies the String index at which to start the
 next match. It is coerced to an integer when used (see 21.2.5.2.2). This property
 shall have the attributes { [[Writable]]: true, [[Enumerable]]: false,
 [[Configurable]]: false }.
EdgeHTML Mode
For lastIndex, [[Writable]] cannot be changed from true to false. This operation should be allowed, even though [[Configurable]] is false (see 6.1.7.1).

[bookmark: section_057cd8751111111187cd945a522a7605][bookmark: _Toc531070603][ECMA-262/9:2018] Section 22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O)
V0202: @@isConcatSpreadable is not implemented
The specification states:
22.1.3.1.1 Runtime Semantics: IsConcatSpreadable (O)

 The abstract operation IsConcatSpreadable with argument O performs the following
 steps:

 1. If Type(O) is not Object, return false.
 2. Let spreadable be ? Get(O, @@isConcatSpreadable).
 3. If spreadable is not undefined, return ToBoolean(spreadable).
 4. Return ? IsArray(O).
EdgeHTML Mode
@@isConcatSpreadable is not implemented.

[bookmark: section_e61945b3111111118faebadf4e96fba1][bookmark: _Toc531070604][ECMA-262/9:2018] Section 22.1.3.3 Array.prototype.copyWithin (target, start [, end])
V0203: Under certain circumstances Array.prototype.copyWithin does not throw a TypeError when it should
The specification states:
22.1.3.3 Array.prototype.copyWithin (target, start [, end])
 ...
 The following steps are taken:
 ...
 12. Repeat, while count > 0
 a. Let fromKey be ! ToString(from).
 b. Let toKey be ! ToString(to).
 c. Let fromPresent be ? HasProperty(O, fromKey).
 d. If fromPresent is true, then
 i. Let fromVal be ? Get(O, fromKey).
 ii. Perform ? Set(O, toKey, fromVal, true).
 e. Else fromPresent is false,
 i. Perform ? DeletePropertyOrThrow(O, toKey).
 f. Let from be from + direction.
 g. Let to be to + direction.
 h. Let count be count − 1.
 13. Return O.
EdgeHTML Mode
The following steps are not executed:
 12. ...
 e. Else fromPresent is false,
 i. Perform ? DeletePropertyOrThrow(O, toKey).
As a result, under certain circumstances Array.prototype.copyWithin does not throw a TypeError when it should.

[bookmark: section_4b75e069111111118cebbf7229c723bd][bookmark: _Toc531070605][ECMA-262/9:2018] Section 22.1.3.18 Array.prototype.push (...items)
V0204: Array.prototype.push does not throw TypeError on length overflow
The specification states:
22.1.3.18 Array.prototype.push (...items)
 ...
 When the push method is called with zero or more arguments the following steps are
 taken:

 1. Let O be ? ToObject(this value).
 2. Let len be ? ToLength(? Get(O, "length")).
 3. Let items be a List whose elements are, in left to right order, the arguments
 that were passed to this function invocation.
 4. Let argCount be the number of elements in items.
 5. If len + argCount > 2^53-1, throw a TypeError exception.
EdgeHTML Mode
The following step is not executed:
 5. If len + argCount > 2^53-1, throw a TypeError exception.
As a result, Array.prototype.push does not throw TypeError on length overflow.

[bookmark: section_13d7c55e11111111a6f6eb8f304713f1][bookmark: _Toc531070606][ECMA-262/9:2018] Section 22.1.3.25 Array.prototype.sort (comparefn)
V0205: Array.prototype.sort uses ToUint32() for length conversion
The specification states:
22.1.3.25 Array.prototype.sort (comparefn)

 The elements of this array are sorted. The sort is not necessarily stable (that is,
 elements that compare equal do not necessarily remain in their original order). If
 comparefn is not undefined, it should be a function that accepts two arguments x and
 y and returns a negative value if x < y, zero if x = y, or a positive value if x > y.

 Upon entry, the following steps are performed to initialize evaluation of the sort
 function:

 1. [2018 spec only] If comparefn is not undefined and IsCallable(comparefn) is
 false, throw a TypeError exception.
 ... Let obj be ? ToObject(this value).
 ... Let len be ? ToLength(? Get(obj, "length")).
EdgeHTML Mode
Array.prototype.sort uses ToUint32() rather than ToLength() for length conversion:
 ... Let obj be ToObject(this value).
 ... Let len be ? ToUint32(? Get(obj, "length")).

[bookmark: section_2149aa69111111119ecfa162852f607b][bookmark: _Toc531070607][ECMA-262/9:2018] Section 22.1.3.27 Array.prototype.toLocaleString ([reserved1 [, reserved2]])
V0206: Array.prototype.toLocaleString uses InvokeBuiltinMethod instead of Invoke
The specification states:
22.1.3.27 Array.prototype.toLocaleString ([reserved1 [, reserved2]])

 An ECMAScript implementation that includes the ECMA-402 Internationalization API must
 implement the Array.prototype.toLocaleString method as specified in the ECMA-402
 specification. If an ECMAScript implementation does not include the ECMA-402 API the
 following specification of the toLocaleString method is used.
 ...
 The following steps are taken:
 ...
 6. Repeat, while k < len
 ...
 c. If nextElement is not undefined or null, then
 i. Let S be ? ToString(? Invoke(nextElement, "toLocaleString")).
EdgeHTML Mode
Array.prototype.toLocaleString uses InvokeBuiltinMethod instead of Invoke:
 ...
 6. Repeat, while k < len
 ...
 c. If nextElement is not undefined or null, then
 i. Let S be ? ToString(? InvokeBuiltinMethod(nextElement, "toLocaleString")).

[bookmark: section_ccccd048111111118ce5292368612531][bookmark: _Toc531070608][ECMA-262/9:2018] Section 24.2 SharedArrayBuffer Objects
V0221: The SharedArrayBuffer object is not supported
The specification states:
24.2 SharedArrayBuffer Objects
EdgeHTML Mode
The SharedArrayBuffer object is not supported.

[bookmark: section_83dc2f27111111119b5baf1a605711fe][bookmark: _Toc531070609][ECMA-262/9:2018] Section 24.4 The Atomics Object
V0219: The Atomics object is not supported
The specification states:
18.4.1 Atomics

 See 24.4.

24.4 The Atomics Object

 The Atomics object:

 • is the intrinsic object %Atomics%.
 ...

 ... When used with discipline, the Atomics functions allow multi-agent programs that
 communicate through shared memory to execute in a well-understood order even on
 parallel CPUs. ...
EdgeHTML Mode
The Atomics object is not supported.

[bookmark: section_07ed37dd1111111183eee7fbe1fb7cce][bookmark: _Toc531070610][ECMA-262/9:2018] Section 25.1.1.3 The AsyncIterable Interface
V0216: The AsyncIterable interface is not supported
The specification states:
25.1.1.3 The AsyncIterable Interface

 The AsyncIterable interface includes the properties described in Table 63:

 Table 63: AsyncIterable Interface Required Properties

 Property | Value | Requirements

 @@asyncIterator | A function that returns | The returned object must conform
 | an AsyncIterator object. | to the AsyncIterator interface.
EdgeHTML Mode
The AsyncIterable interface is not supported.

[bookmark: section_69d0c41011111111bef85276467a652b][bookmark: _Toc531070611][ECMA-262/9:2018] Section 25.2.3.3 GeneratorFunction.prototype [@@toStringTag]
V0218: GeneratorFunction.prototype[@@toStringTag] is not implemented because the @@toStringTag feature is not implemented
The specification states:
25.2.3.3 Generator.prototype [@@toStringTag]

 The initial value of the @@toStringTag property is the String value
 "GeneratorFunction".

 This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
 [[Configurable]]: true }.
EdgeHTML Mode
GeneratorFunction.prototype[@@toStringTag] is not implemented because the @@toStringTag feature is not implemented.

[bookmark: section_ba21b3fe1111111182052415d2c20fcd][bookmark: _Toc531070612][ECMA-262/9:2018] Section 25.3 AsyncGeneratorFunction Objects
V0213: AsyncGenerator objects are not supported
The specification states:
25.3 AsyncGeneratorFunction Objects

 AsyncGeneratorFunction objects are functions that are usually created by evaluating
 AsyncGeneratorDeclaration, AsyncGeneratorExpression, and AsyncGeneratorMethod
 syntactic productions. They may also be created by calling the
 %AsyncGeneratorFunction% intrinsic.
EdgeHTML Mode
AsyncGenerators objects are not supported.

[bookmark: section_61109a8011111111bd626c5275060d13][bookmark: _Toc531070613][ECMA-262/9:2018] Section 25.5 AsyncGenerator Objects
V0217: AsyncGenerator objects are not supported
The specification states:
25.5 AsyncGenerator Objects

 An AsyncGenerator object is an instance of an async generator function and conforms
 to both the AsyncIterator and AsyncIterable interfaces.

 AsyncGenerator instances directly inherit properties from the object that is the
 value of the prototype property of the AsyncGenerator function that created the
 instance. AsyncGenerator instances indirectly inherit properties from the
 AsyncGenerator Prototype intrinsic, %AsyncGeneratorPrototype%.
EdgeHTML Mode
AsyncGenerator objects are not supported.

[bookmark: section_b0b66da011111111b43db4ce7c4c293b][bookmark: _Toc531070614][ECMA-262/9:2018] Section 25.6.4 Properties of the Promise Constructor
V0106: The Promise.length property is not configurable
The specification states:
25.6.4 Properties of the Promise Constructor

 The Promise constructor:

 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %FunctionPrototype%.
 • has the following properties:
EdgeHTML Mode
The Promise.length property is not configurable.

[bookmark: section_04c73a3b111111119c68f966c4eefdb8][bookmark: _Toc531070615][ECMA-262/9:2018] Section 25.6.4.1 Promise.all (iterable)
V0207: The IteratorClose abstract operation is not implemented
The specification states:
... Promise.all (iterable)

 The all function returns a new promise which is fulfilled with an array of
 fulfillment values for the passed promises, or rejects with the reason of the first
 passed promise that rejects. It resolves all elements of the passed iterable to
 promises as it runs this algorithm.

 1. Let C be the this value.
 2. If Type(C) is not Object, throw a TypeError exception.
 3. Let promiseCapability be ? NewPromiseCapability(C).
 4. Let iterator be GetIterator(iterable).
 5. IfAbruptRejectPromise(iterator, promiseCapability).

 ... Let result be PerformPromiseAll(iteratorRecord, C, promiseCapability).
 ... If result is an abrupt completion, then
 a. If iteratorRecord.[[Done]] is false, let result be IteratorClose(iterator,
 result).
 b. IfAbruptRejectPromise(result, promiseCapability).
 ... Return Completion(result).
EdgeHTML Mode
The IteratorClose abstract operation is not implemented; therefore step a is not done.

[bookmark: section_35a90b651111111195485d087cfb8d9c][bookmark: _Toc531070616][ECMA-262/9:2018] Section 25.7 AsyncFunction Objects
V0214: AsyncFunction objects are not supported
The specification states:
25.7 AsyncFunction Objects

 AsyncFunction objects are functions that are usually created by evaluating
 AsyncFunctionDeclarations, AsyncFunctionExpressions, AsyncMethods, and
 AsyncArrowFunctions. They may also be created by calling the %AsyncFunction%
 intrinsic.
EdgeHTML Mode
AsyncFunction objects are not supported.

[bookmark: section_fbf7aa921ace44c6b6f9a44a32eafaca][bookmark: _Toc531070617]Clarifications
There are no clarifications of the MAY and SHOULD requirements of [ECMA-262/9:2018].
[bookmark: section_6b4fb47338984e0cba0c0c448e802015][bookmark: _Toc531070618]Extensions
The following subsections describe extensions to the requirements of [ECMA-262/9:2018].
[bookmark: section_1f6a609b222222229ea466da15a2cc4a][bookmark: _Toc531070619][ECMA-262/9:2018] Section 7.3.18 Invoke (V, P [, argumentsList])
E0009: Add InvokeBuiltinMethod(V,P [, argumentsList])
The specification states:
7.3.18 Invoke(V,P [, argumentsList])
EdgeHTML Mode
Add the following section:
 7.3.18.1 InvokeBuiltinMethod(V,P [, argumentsList])
 The abstract operation Invoke is used to call a built-in method property of an ECMAScript language value. This operation behaves the same way as Invoke(V,P [, argumentsList]) except that it always invokes the initial property P of V regardless of subsequent changes to the property.

[bookmark: section_3f4170a0222222229f7f7dcdfc37cc43][bookmark: _Toc531070620][ECMA-262/9:2018] Section 19.2.3.2 Function.prototype.bind (thisArg, ...args)
E0010: Function.prototype.bind() creates functions with additional caller and arguments properties
The specification states:
4.3.34 own property

 property that is directly contained by its object

8.2.2 CreateIntrinsics (realmRec)
 ...
 ...
 9. Let funcProto be CreateBuiltinFunction(realmRec, ... noSteps, objProto).
 10. Set intrinsics.[[%FunctionPrototype%]] to funcProto.
 11. Call thrower.[[SetPrototypeOf]](funcProto).
 12. Perform AddRestrictedFunctionProperties(funcProto, realmRec).

9.2.5 FunctionCreate (kind, ParameterList, Body, Scope, Strict [, prototype])
 ...
 1. If the prototype argument was not passed, then
 a. Let prototype be the intrinsic object %FunctionPrototype%.

... AddRestrictedFunctionProperties (F, realm)
 ...
 ...
 3. Perform ! DefinePropertyOrThrow(F, "caller", PropertyDescriptor {[[Get]]:
 thrower, [[Set]]: thrower, [[Enumerable]]: false,
 [[Configurable]]: true}).
 4. Return ! DefinePropertyOrThrow(F, "arguments", PropertyDescriptor {[[Get]]:
 thrower, [[Set]]: thrower, [[Enumerable]]: false,
 [[Configurable]]: true}).

9.3 Built-in Function Objects
 ...
 Unless otherwise specified every built-in function object has the %FunctionPrototype%
 object as the initial value of its [[Prototype]] internal slot.

9.4.1.3 BoundFunctionCreate (targetFunction, boundThis, boundArgs)
 ...
 ...
 2. Let proto ? be targetFunction.[[GetPrototypeOf]]().
 ...
 7. Set obj.[[Prototype]] to proto.

19.2.3.2 Function.prototype.bind (thisArg , ...args)
 ...
 ...
 4. Let F be ? BoundFunctionCreate(Target, thisArg, args).
EdgeHTML Mode
Function.prototype.bind() creates functions with additional caller and arguments properties. These properties should be inherited from the Function prototype (%FunctionPrototype%).
The 5.1 Edition of the ECMAScript® Language Specification of the version of the spec said that bind should add caller and Arguments own properties to the created bound function. However, later specifications do not.
These are the relevant lines from the 5.1 Edition:
 15.3.4.5 Function.prototype.bind (thisArg [, arg1 [, arg2, ...]])
 ...
 ...
 20. Call the [[DefineOwnProperty]] internal method of F with arguments "caller",
 PropertyDescriptor.
 {[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false},
 and false.
 21. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments",
 PropertyDescriptor,
 {[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false},
 and false.

[bookmark: section_85cef1f022222222a93bc0aa9bdbc9d6][bookmark: _Toc531070621][ECMA-262/9:2018] Section 21.2.4 Properties of the RegExp Constructor
E0004: The RegExp constructor has a property named lastParen that represents the last group from the last successful match
The specification states:
21.2.4 Properties of the RegExp Constructor

 The RegExp constructor:

 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %FunctionPrototype%.
 • has the following properties:
EdgeHTML Mode
The RegExp constructor has a property named lastParen that represents the last group from the last successful match. Before a successful match, it is set to the empty string. For example:
 var re = /(a|b)(c|d)?/
 // RegExp.lastParen === ''
 re.exec('ac')
 // RegExp.lastParen === 'c'
 re.exec('z')
 // RegExp.lastParen === 'c'
 re.exec('bd')
 // RegExp.lastParen === 'd'
lastParen is a data property and has the following attributes:
 {"writable":true,"enumerable":true,"configurable":false}
Even though the [[Writable]] attribute is true, lastParen is read-only and it is not possible to change its value directly.
The RegExp constructor has another property called $+ which behaves the same as lastParen but has the following attributes:
 {"writable":true,"enumerable":false,"configurable":false}

E0003: The RegExp constructor has a property named lastMatch that holds the matched substring for the last successful match
The specification states:
21.2.4 Properties of the RegExp Constructor

 The RegExp constructor:

 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %FunctionPrototype%.
 • has the following properties:
EdgeHTML Mode
The RegExp constructor has a property named lastMatch that holds the matched substring for the last successful match. Before a successful match it is set to the empty string. For example:
 var re = /a|c/
 // RegExp.lastMatch === ''
 re.exec('az')
 // RegExp.lastMatch === 'a'
 re.exec('bz')
 // RegExp.lastMatch === 'a'
 re.exec('cz')
 // RegExp.lastMatch === 'c'
lastMatch is a data property and has the following attributes:
 {"writable":true,"enumerable":true,"configurable":false}
Even though the [[Writable]] attribute is true, lastMatch is read-only and it is not possible to change its value directly.
The RegExp constructor has a property named $& that behaves the same as lastMatch but has the following attributes:
 {"writable":true,"enumerable":false,"configurable":false}

E0007: The RegExp constructor has a property named index whose value is the starting index of the matched substring of the last successful match
The specification states:
21.2.4 Properties of the RegExp Constructor

 The RegExp constructor:

 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %FunctionPrototype%.
 • has the following properties:
EdgeHTML Mode
The RegExp constructor has a property named index whose value is the starting index of the matched substring of the last successful match. Before a successful match, it is set to -1. For example:
 var re = /world/g
 // RegExp.index === -1
 re.exec('Hello world')
 // RegExp.index === 6
 re.exec('failure')
 // RegExp.index === 6
 re.exec('Another hello world')
 // RegExp.index === 14
index is a data property and has the following attributes:
 {"writable":true,"enumerable":false,"configurable":false}
Even though the [[Writable]]attribute is true, index is read-only and cannot be changed directly.

E0002: The RegExp constructor has a property named input that represents the input string of the last successful match
The specification states:
21.2.4 Properties of the RegExp Constructor

 The RegExp constructor:

 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %FunctionPrototype%.
 • has the following properties:
EdgeHTML Mode
The RegExp constructor has a property named input that represents the input string of the last successful match. Before a successful match, it is set to the empty string. For example:
 var re = /a|c/
 // RegExp.input === ''
 re.exec('az')
 // RegExp.input === 'az'
 re.exec('bz')
 // RegExp.input === 'az'
 re.exec('cz')
 // RegExp.input === 'cz'
This is a data property and has the following attributes:
 {"writable":true,"enumerable":true,"configurable":false}
Even though the [[Writable]] attribute is true, the property is read-only and it is not possible to change its value directly.
RegExp constructor has a property named $_ which behaves the same way as the input property but has the following attributes:
 {"writable":true,"enumerable":false,"configurable":false}

E0006: The RegExp constructor has a property named rightContext that holds the substring of the input string that is to the right of the matched substring
The specification states:
21.2.4 Properties of the RegExp Constructor

 The RegExp constructor:

 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %FunctionPrototype%.
 • has the following properties:
EdgeHTML Mode
The RegExp constructor has a property named rightContext that holds the substring of the input string that is to the right of the matched substring of the last successful match. Before a successful match, rightContext is set to the empty string. For example:
 var re = /test/g
 // RegExp.rightContext === ''
 re.exec('test right')
 // RegExp.rightContext === ' right'
 re.exec('failure')
 // RegExp.rightContext === ' right'
 re.exec('test right another')
 // RegExp.rightContext === ' right another'
rightContext is a data property and has the following attributes:
 {"writable":true,"enumerable":true,"configurable":false}
Even though the [[Writable]] attribute is true, rightContext is read-only and cannot be changed directly.
The RegExp constructor also has a property named $' which behaves the same as rightContext but has the following attributes:
 {"writable":true,"enumerable":false,"configurable":false}

E0001: The RegExp constructor has additional properties that represent the first nine groups of the last successful match
The specification states:
21.2.4 Properties of the RegExp Constructor

 The RegExp constructor:

 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %FunctionPrototype%.
 • has the following properties:
EdgeHTML Mode
The RegExp constructor has additional properties, $1, $2, ..., and $9, that represent the first nine groups of the last successful match. Before a successful match, each property is set to the empty string. For each group of the match (up to nine maximum), the corresponding property is set to a value that represents the group. For example:
 var re = /(a|b)(c|d)/;
 // RegExp.$1 === ''
 // RegExp.$2 === ''
 // RegExp.$3 === ''
 // ...
 // RegExp.$9 === ''
 re.exec('ac'); // Successful match
 // RegExp.$1 === 'a'
 // RegExp.$2 === 'c'
 // RegExp.$3 === ''
 // ...
 // RegExp.$9 === ''
 re.exec('yz'); // No match
 // $1-$9 are same as before
 // RegExp.$1 === 'a'
 // RegExp.$2 === 'c'
 // RegExp.$3 === ''
 // ...
 // RegExp.$9 === ''
 re.exec('bd'); // Successful match
 // $1-$2 are now different
 // RegExp.$1 === 'b'
 // RegExp.$2 === 'd'
 // RegExp.$3 === ''
 // ...
 // RegExp.$9 === ''
These properties are data properties and have the following attributes:
 {"writable":true,"enumerable":true,"configurable":false}
Even though the [[Writable]] attribute is true, the properties are read-only and it is not possible to change their values directly.

E0005: The RegExp constructor has a property named leftContext that holds the substring of the input string that is to the left of the matched substring
The specification states:
21.2.4 Properties of the RegExp Constructor

 The RegExp constructor:

 • has a [[Prototype]] internal slot whose value is the intrinsic object
 %FunctionPrototype%.
 • has the following properties:
EdgeHTML Mode
The RegExp constructor has a property named leftContext that holds the substring of the input string that is to the left of the matched substring of the last successful match. Before a successful match, leftContext is set to the empty string. For example:
 var re = /world/g
 // RegExp.leftContext === ''
 re.exec('Hello world')
 // RegExp.leftContext === 'Hello '
 re.exec('failure')
 // RegExp.leftContext === 'Hello '
 re.exec('Another hello world')
 // RegExp.leftContext === 'Another hello '
leftContext is a data property and has the following attributes:
 {"writable":true,"enumerable":true,"configurable":false}
Even though the [[Writable]] attribute is true, leftContext is read-only and cannot be changed directly.
The RegExp constructor also has a property named $` which behaves the same as leftContext but has the following attributes:
 {"writable":true,"enumerable":false,"configurable":false}

[bookmark: section_7d2860d8b2be48fbab44fab8c61dab75][bookmark: _Toc531070622]Error Handling
There are no additional error handling considerations.
[bookmark: section_5ce1080480d64dfb981676fcc4b8c336][bookmark: _Toc531070623]Security
There are no additional security considerations.
[bookmark: section_98b52f5268cf454db14dcedc75a55e80][bookmark: _Toc531070624]Change Tracking
No table of changes is available. The document is either new or has had no changes since its last release.
[bookmark: section_28edd88177134f7ebcaf416be2644f07][bookmark: _Toc531070625]Index
49 / 49
[MS-ES2018] - v20181127
Microsoft Edge ECMAScript 2018 Language Specification (9th edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: November 27, 2018
.

...args) (section 2.1.30 24, section 2.3.2 40)

C

Change tracking 48
completion) (section 2.1.2 7, section 2.1.3 8)

E

expr - iterationKind) 17

G

Glossary 5

I

index - unicode) 32
Informative references 5
Introduction 5

N

Normative references 5

P

P [- argumentsList]) 39
ParameterList - Body - Scope - Strict) 8
PreferredType]) 7
proto) 22

R

References
 informative 5
 normative 5
reserved2]]) (section 2.1.28 23, section 2.1.53 35)

S

start [- end]) 33

T

target) 13
Tracking changes 48
[bookmark: EndOfDocument_ST]
48 / 48
[MS-ES2018] - v20181127
Microsoft Edge ECMAScript 2018 Language Specification (9th edition) Standards Support Document
Copyright © 2018 Microsoft Corporation
Release: November 27, 2018
